BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33618473)

  • 1. The effect of straw-returning on antimony and arsenic volatilization from paddy soil and accumulation in rice grains.
    Yan H; Wang X; Yang Y; Duan G; Zhang H; Cheng W
    Environ Pollut; 2020 Aug; 263(Pt A):114581. PubMed ID: 33618473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO
    Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C
    Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony release and volatilization from rice paddy soils: Field and microcosm study.
    Caplette JN; Gfeller L; Lei D; Liao J; Xia J; Zhang H; Feng X; Mestrot A
    Sci Total Environ; 2022 Oct; 842():156631. PubMed ID: 35691353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
    Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG
    Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation and location of arsenic and antimony in rice samples around antimony mining area.
    Wu TL; Cui XD; Cui PX; Ata-Ul-Karim ST; Sun Q; Liu C; Fan TT; Gong H; Zhou DM; Wang YJ
    Environ Pollut; 2019 Sep; 252(Pt B):1439-1447. PubMed ID: 31265954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.
    Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J
    Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination.
    Li B; Xu R; Sun X; Han F; Xiao E; Chen L; Qiu L; Sun W
    Chemosphere; 2021 Jan; 263():128227. PubMed ID: 33297183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil.
    Zhang S; Geng L; Fan L; Zhang M; Zhao Q; Xue P; Liu W
    Sci Total Environ; 2020 Feb; 704():135239. PubMed ID: 31822424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Biochars on the Iron Plaque Formation and the Antimony Accumulation in Rice Seedings.
    Zhang Z; Jia C; Gan Y; Wang S
    Bull Environ Contam Toxicol; 2022 Dec; 109(6):1088-1094. PubMed ID: 36029308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system.
    Zhang X; Liu T; Li F; Li X; Du Y; Yu H; Wang X; Liu C; Feng M; Liao B
    J Environ Sci (China); 2021 Feb; 100():90-98. PubMed ID: 33279057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of steel slag amendments on accumulation of cadmium and arsenic by rice (Oryza sativa) in a historically contaminated paddy field.
    He H; Xiao Q; Yuan M; Huang R; Sun X; Wang X; Zhao H
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40001-40008. PubMed ID: 32651791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions.
    Sun W; Sun X; Li B; Häggblom MM; Han F; Xiao E; Zhang M; Wang Q; Li F
    Sci Total Environ; 2019 Jul; 675():273-285. PubMed ID: 31030134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of silicon treatment on antimony uptake and translocation in rice genotypes with different radial oxygen loss.
    Zhang L; Yang Q; Wang S; Li W; Jiang S; Liu Y
    Ecotoxicol Environ Saf; 2017 Oct; 144():572-577. PubMed ID: 28688359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils.
    Syu CH; Yu CH; Lee DY
    Environ Pollut; 2020 Nov; 266(Pt 2):115140. PubMed ID: 32653722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of Straw Incorporation and Domestic Sewage Irrigation on Ammonia Volatilization from Paddy Fields].
    Xu SS; Hou PF; Fan LH; Xue LH; Yang LZ; Wang SH; Li GH
    Huan Jing Ke Xue; 2016 Oct; 37(10):3963-3970. PubMed ID: 29964433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviors of heavy metal(loid)s in a cocontaminated alkaline paddy soil throughout the growth period of rice.
    Zhang X; Yu H; Li F; Fang L; Liu C; Huang W; Du Y; Peng Y; Xu Q
    Sci Total Environ; 2020 May; 716():136204. PubMed ID: 31969258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing ammonia volatilization from paddy field with rice straw derived biochar.
    Sun X; Zhong T; Zhang L; Zhang K; Wu W
    Sci Total Environ; 2019 Apr; 660():512-518. PubMed ID: 30640118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of low-dose biochar amendments on arsenic accumulation in rice (Oryza sativa L.).
    Lv D; Wang Z; Sun Y; Jin W; Wang Y; Zhou L; Zheng X
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13495-13503. PubMed ID: 33185794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of applying persulfate on the accumulation of arsenic in rice plants grown in arsenic-contaminated paddy soil.
    Zhang J; Zou Q; Sun M; Wei H; Huang L; Ye T; Chen Z
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66479-66489. PubMed ID: 35503149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of atmospheric H
    Lin X; Li H; Ai S
    Ecotoxicol Environ Saf; 2021 Jul; 217():112100. PubMed ID: 33933890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.