These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33618773)

  • 1. Hidden Markov models identify major movement modes in accelerometer and magnetometer data from four albatross species.
    Conners MG; Michelot T; Heywood EI; Orben RA; Phillips RA; Vyssotski AL; Shaffer SA; Thorne LH
    Mov Ecol; 2021 Feb; 9(1):7. PubMed ID: 33618773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach to seabird posture estimation: finding roll and yaw angles of dynamic soaring albatrosses using tri-axial magnetometers.
    Schoombie S; Wilson RP; Ryan PG
    R Soc Open Sci; 2023 Dec; 10(12):231363. PubMed ID: 38077216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shadowed by scale: subtle behavioral niche partitioning in two sympatric, tropical breeding albatross species.
    Conners MG; Hazen EL; Costa DP; Shaffer SA
    Mov Ecol; 2015; 3(1):28. PubMed ID: 26392862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds.
    Sur M; Suffredini T; Wessells SM; Bloom PH; Lanzone M; Blackshire S; Sridhar S; Katzner T
    PLoS One; 2017; 12(4):e0174785. PubMed ID: 28403159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective classification of latent behavioral states in bio-logging data using multivariate-normal hidden Markov models.
    Phillips JS; Patterson TA; Leroy B; Pilling GM; Nicol SJ
    Ecol Appl; 2015 Jul; 25(5):1244-58. PubMed ID: 26485953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural compass: animal behaviour recognition using magnetometers.
    Chakravarty P; Maalberg M; Cozzi G; Ozgul A; Aminian K
    Mov Ecol; 2019; 7():28. PubMed ID: 31485331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for identifying fine-scale bottom-use in a benthic-foraging pinniped.
    Angelakis N; Goldsworthy SD; Connell SD; Durante LM
    Mov Ecol; 2023 Jun; 11(1):34. PubMed ID: 37296462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal behaviour on the move: the use of auxiliary information and semi-supervision to improve behavioural inferences from Hidden Markov Models applied to GPS tracking datasets.
    Saldanha S; Cox SL; Militão T; González-Solís J
    Mov Ecol; 2023 Jul; 11(1):41. PubMed ID: 37488611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird.
    Clay TA; Joo R; Weimerskirch H; Phillips RA; den Ouden O; Basille M; Clusella-Trullas S; Assink JD; Patrick SC
    J Anim Ecol; 2020 Aug; 89(8):1811-1823. PubMed ID: 32557603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of techniques for classifying behavior from accelerometers for two species of seabird.
    Patterson A; Gilchrist HG; Chivers L; Hatch S; Elliott K
    Ecol Evol; 2019 Mar; 9(6):3030-3045. PubMed ID: 30962879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flap or soar? How a flight generalist responds to its aerial environment.
    Shamoun-Baranes J; Bouten W; van Loon EE; Meijer C; Camphuysen CJ
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart rate and estimated energy expenditure of flapping and gliding in black-browed albatrosses.
    Sakamoto KQ; Takahashi A; Iwata T; Yamamoto T; Yamamoto M; Trathan PN
    J Exp Biol; 2013 Aug; 216(Pt 16):3175-82. PubMed ID: 23661772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding decision making in a food-caching predator using hidden Markov models.
    Farhadinia MS; Michelot T; Johnson PJ; Hunter LTB; Macdonald DW
    Mov Ecol; 2020; 8():9. PubMed ID: 32071720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel hypothesis for how albatrosses optimize their flight physics in real-time: an extremum seeking model and control for dynamic soaring.
    Pokhrel S; Eisa SA
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36594630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales.
    Harel R; Duriez O; Spiegel O; Fluhr J; Horvitz N; Getz WM; Bouten W; Sarrazin F; Hatzofe O; Nathan R
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Cerebellar Disorders with Wearable Inertial Sensor Data Using Time-Frequency and Autoregressive Hidden Markov Model Approaches.
    Knudson KC; Gupta AS
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling spectral analysis and hidden Markov models for the segmentation of behavioural patterns.
    Heerah K; Woillez M; Fablet R; Garren F; Martin S; De Pontual H
    Mov Ecol; 2017; 5():20. PubMed ID: 28944062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal dynamic soaring consists of successive shallow arcs.
    Bousquet GD; Triantafyllou MS; Slotine JE
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.
    Liu DN; Hou ZX; Guo Z; Yang XX; Gao XZ
    Bioinspir Biomim; 2017 Jan; 12(1):016014. PubMed ID: 27991431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.