These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 3361886)
21. ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate. Cave AC; Ingwall JS; Friedrich J; Liao R; Saupe KW; Apstein CS; Eberli FR Circulation; 2000 May; 101(17):2090-6. PubMed ID: 10790352 [TBL] [Abstract][Full Text] [Related]
22. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts. Davies NJ; McVeigh JJ; Lopaschuk GD Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of ischemic contracture in ferret hearts: relative roles of [Ca2+]i elevation and ATP depletion. Koretsune Y; Marban E Am J Physiol; 1990 Jan; 258(1 Pt 2):H9-16. PubMed ID: 2301617 [TBL] [Abstract][Full Text] [Related]
24. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy. Williams JP; Headrick JP Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892 [TBL] [Abstract][Full Text] [Related]
25. Anaerobic glycolysis and the development of ischaemic contracture in isolated rat heart. Lipasti JA; Nevalainen TJ; Alanen KA; Tolvanen MA Cardiovasc Res; 1984 Mar; 18(3):145-8. PubMed ID: 6705006 [TBL] [Abstract][Full Text] [Related]
26. Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Owen P; Dennis S; Opie LH Circ Res; 1990 Feb; 66(2):344-54. PubMed ID: 2297807 [TBL] [Abstract][Full Text] [Related]
27. Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Kingsley PB; Sako EY; Yang MQ; Zimmer SD; Ugurbil K; Foker JE; From AH Am J Physiol; 1991 Aug; 261(2 Pt 2):H469-78. PubMed ID: 1877673 [TBL] [Abstract][Full Text] [Related]
28. Insulin improves cardiac contractile function and oxygen utilization efficiency during moderate ischemia without compromising myocardial energetics. Tune JD; Mallet RT; Downey HF J Mol Cell Cardiol; 1998 Oct; 30(10):2025-35. PubMed ID: 9799656 [TBL] [Abstract][Full Text] [Related]
29. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. Allen DG; Morris PG; Orchard CH; Pirolo JS J Physiol; 1985 Apr; 361():185-204. PubMed ID: 3989725 [TBL] [Abstract][Full Text] [Related]
30. Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Tian R; Abel ED Circulation; 2001 Jun; 103(24):2961-6. PubMed ID: 11413087 [TBL] [Abstract][Full Text] [Related]
31. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Collins-Nakai RL; Noseworthy D; Lopaschuk GD Am J Physiol; 1994 Nov; 267(5 Pt 2):H1862-71. PubMed ID: 7977816 [TBL] [Abstract][Full Text] [Related]
32. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Massie BM; Schaefer S; Garcia J; McKirnan MD; Schwartz GG; Wisneski JA; Weiner MW; White FC Circulation; 1995 Mar; 91(6):1814-23. PubMed ID: 7882492 [TBL] [Abstract][Full Text] [Related]
33. NMR visibility of Pi in perfused rat hearts is affected by changes in substrate and contractility. Garlick PB; Townsend RM Am J Physiol; 1992 Aug; 263(2 Pt 2):H497-502. PubMed ID: 1510146 [TBL] [Abstract][Full Text] [Related]
34. The role of phosphocreatine and ATP in contraction of normal and ischemic heart. Kupriyanov VV; Lakomkin VL; Steinschneider AYa ; Novikova NA; Severina MYu ; Kapelko VI; Saks VA Biomed Biochim Acta; 1987; 46(8-9):S493-8. PubMed ID: 3435507 [TBL] [Abstract][Full Text] [Related]
35. Substrate competition in postischemic myocardium. Effect of substrate availability during reperfusion on metabolic and contractile recovery in isolated rat hearts. Tamm C; Benzi R; Papageorgiou I; Tardy I; Lerch R Circ Res; 1994 Dec; 75(6):1103-12. PubMed ID: 7955147 [TBL] [Abstract][Full Text] [Related]
36. Verapamil preserves myocardial performance and energy metabolism in left ventricular hypertrophy following ischemia and reperfusion. Phosphorus 31 magnetic resonance spectroscopy study. Buser PT; Wagner S; Wu ST; Derugin N; Parmley WW; Higgins CB; Wikman-Coffelt J Circulation; 1989 Dec; 80(6):1837-45. PubMed ID: 2532075 [TBL] [Abstract][Full Text] [Related]
37. Amiodarone pretreatment effects on ischemic isovolumic rat hearts: a P-31 nuclear magnetic resonance study of intracellular pH and high-energy phosphates contents evolutions. Vander Elst L; Goudemant JF; Mouton J; Chatelain P; Van Haverbeke Y; Muller RN J Cardiovasc Pharmacol; 1990 Mar; 15(3):377-85. PubMed ID: 1691360 [TBL] [Abstract][Full Text] [Related]
38. Substrate regulation of the nucleotide pool during regional ischaemia and reperfusion in an isolated rat heart preparation: a phosphorus-31 magnetic resonance spectroscopy analysis. Camacho SA; Parmley WW; James TL; Abe H; Wu ST; Botvinick EH; Watters TA; Schiller N; Sievers R; Wikman-Coffelt J Cardiovasc Res; 1988 Mar; 22(3):193-203. PubMed ID: 3167943 [TBL] [Abstract][Full Text] [Related]
39. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts. Ambrosio G; Jacobus WE; Mitchell MC; Litt MR; Becker LC Am J Physiol; 1989 Feb; 256(2 Pt 2):H560-6. PubMed ID: 2916688 [TBL] [Abstract][Full Text] [Related]
40. Myocardial pyruvate, lactate, and orthophosphate contents under different postischemic conditions. A study in a paracorporeal rat heart model. Hultman J; Ronquist G Scand J Thorac Cardiovasc Surg; 1985; 19(1):69-76. PubMed ID: 4012243 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]