BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33619697)

  • 41. Utilization of
    Ruengvisesh S; Wenbap P; Damrongsaktrakul P; Santiakachai S; Kasemsukwimol W; Chitvittaya S; Painsawat Y; Phung-On I; Tuitemwong P
    J Microbiol Biotechnol; 2023 Jun; 33(6):771-779. PubMed ID: 36959178
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds.
    Poimenidou SV; Chrysadakou M; Tzakoniati A; Bikouli VC; Nychas GJ; Skandamis PN
    Int J Food Microbiol; 2016 Nov; 237():164-171. PubMed ID: 27585076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Staphylococcus aureus dry-surface biofilms are not killed by sodium hypochlorite: implications for infection control.
    Almatroudi A; Gosbell IB; Hu H; Jensen SO; Espedido BA; Tahir S; Glasbey TO; Legge P; Whiteley G; Deva A; Vickery K
    J Hosp Infect; 2016 Jul; 93(3):263-70. PubMed ID: 27140421
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superheated steam effectively inactivates diverse microbial targets despite mediating effects from food matrices in bench-scale assessments.
    Rana YS; Chen L; Balasubramaniam VM; Snyder AB
    Int J Food Microbiol; 2022 Oct; 378():109838. PubMed ID: 35863173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibitory Effects of Combinations of Chemicals on Escherichia coli, Bacillus cereus, and Staphylococcus aureus Biofilms during the Clean-in-Place Process at an Experimental Dairy Plant.
    Lee ES; Kim JH; Oh MH
    J Food Prot; 2020 Aug; 83(8):1302-1306. PubMed ID: 32236563
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacillus cereus spores and toxins - The potential role of biofilms.
    Huang Y; Flint SH; Palmer JS
    Food Microbiol; 2020 Sep; 90():103493. PubMed ID: 32336372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitigation of Alicyclobacillus spp. spores on food contact surfaces with aqueous chlorine dioxide and hypochlorite.
    Friedrich LM; Goodrich-Schneider R; Parish ME; Danyluk MD
    Food Microbiol; 2009 Dec; 26(8):936-41. PubMed ID: 19835785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage.
    Sharma M; Ryu JH; Beuchat LR
    J Appl Microbiol; 2005; 99(3):449-59. PubMed ID: 16108786
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficacy of chemical sanitizers against
    Kim H; Moon MJ; Kim CY; Ryu K
    Food Sci Biotechnol; 2019 Apr; 28(2):581-590. PubMed ID: 30956871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biofilm formation by Mycobacterium bovis: influence of surface kind and temperatures of sanitizer treatments on biofilm control.
    Adetunji VO; Kehinde AO; Bolatito OK; Chen J
    Biomed Res Int; 2014; 2014():210165. PubMed ID: 24991540
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes.
    Nicholas R; Dunton P; Tatham A; Fielding L
    J Appl Microbiol; 2013 Aug; 115(2):555-64. PubMed ID: 23621101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biofilms formed by Mycobacterium tuberculosis on cement, ceramic, and stainless steel surfaces and their controls.
    Adetunji V; Kehinde A; Bolatito O; Chen J
    J Food Prot; 2014 Apr; 77(4):599-604. PubMed ID: 24680071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inactivation of
    Kim SH; Park SH; Kim SS; Kang DH
    J Food Prot; 2019 Sep; 82(9):1496-1500. PubMed ID: 31411506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms.
    Bremer PJ; Fillery S; McQuillan AJ
    Int J Food Microbiol; 2006 Feb; 106(3):254-62. PubMed ID: 16216371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of the Biofilms Formed by Curli- and Cellulose-Expressing Shiga Toxin-Producing Escherichia coli Using Treatments with Organic Acids and Commercial Sanitizers.
    Park YJ; Chen J
    J Food Prot; 2015 May; 78(5):990-5. PubMed ID: 25951395
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of organic acids for prevention and removal of Bacillus subtilis biofilms on food contact surfaces.
    Akbas MY; Cag S
    Food Sci Technol Int; 2016 Oct; 22(7):587-597. PubMed ID: 26912168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficiency of sanitizing agents for destroying Listeria monocytogenes on contaminated surfaces.
    Mafu AA; Roy D; Goulet J; Savoie L; Roy R
    J Dairy Sci; 1990 Dec; 73(12):3428-32. PubMed ID: 2129169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel.
    Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R
    Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heat-resistance of psychrotolerant Bacillus cereus vegetative cells.
    Guérin A; Dargaignaratz C; Clavel T; Broussolle V; Nguyen-The C
    Food Microbiol; 2017 Jun; 64():195-201. PubMed ID: 28213026
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus.
    Dhowlaghar N; Bansal M; Schilling MW; Nannapaneni R
    Food Microbiol; 2018 Sep; 74():143-150. PubMed ID: 29706330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.