These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33620084)

  • 1. Online monitoring of gas transfer rates during CO and CO/H
    Mann M; Hüser A; Schick B; Dinger R; Miebach K; Büchs J
    Biotechnol Bioeng; 2021 May; 118(5):2092-2104. PubMed ID: 33620084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online measurement of dissolved carbon monoxide concentrations reveals critical operating conditions in gas fermentation experiments.
    Mann M; Miebach K; Büchs J
    Biotechnol Bioeng; 2021 Jan; 118(1):253-264. PubMed ID: 32940909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii.
    Yi J; Huang H; Liang J; Wang R; Liu Z; Li F; Wang S
    Microbiol Spectr; 2021 Oct; 9(2):e0095821. PubMed ID: 34643446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system.
    Xu H; Liang C; Yuan Z; Xu J; Hua Q; Guo Y
    Enzyme Microb Technol; 2017 Jun; 101():24-29. PubMed ID: 28433187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.
    Devarapalli M; Atiyeh HK; Phillips JR; Lewis RS; Huhnke RL
    Bioresour Technol; 2016 Jun; 209():56-65. PubMed ID: 26950756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traits of selected Clostridium strains for syngas fermentation to ethanol.
    Martin ME; Richter H; Saha S; Angenent LT
    Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum.
    Karmann S; Follonier S; Egger D; Hebel D; Panke S; Zinn M
    Microb Biotechnol; 2017 Nov; 10(6):1365-1375. PubMed ID: 28585362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques.
    Phillips JR; Atiyeh HK; Tanner RS; Torres JR; Saxena J; Wilkins MR; Huhnke RL
    Bioresour Technol; 2015 Aug; 190():114-21. PubMed ID: 25935391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles.
    Kim YK; Park SE; Lee H; Yun JY
    Bioresour Technol; 2014 May; 159():446-50. PubMed ID: 24703605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetate augmentation boosts the ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide.
    Schulz S; Molitor B; Angenent LT
    Bioresour Technol; 2023 Feb; 369():128387. PubMed ID: 36435417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential Mixed Cultures: From Syngas to Malic Acid.
    Oswald F; Dörsam S; Veith N; Zwick M; Neumann A; Ochsenreither K; Syldatk C
    Front Microbiol; 2016; 7():891. PubMed ID: 27445993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of CO
    Esquivel-Elizondo S; Delgado AG; Rittmann BE; Krajmalnik-Brown R
    Biotechnol Biofuels; 2017; 10():220. PubMed ID: 28936234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H
    Aklujkar M; Leang C; Shrestha PM; Shrestha M; Lovley DR
    Sci Rep; 2017 Oct; 7(1):13135. PubMed ID: 29030620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of amplified synthetic ethanol pathway integrated using Tn7-tool and powered at the expense of eliminated pta, ack, spo0A and spo0J during continuous syngas or CO2 /H2 blend fermentation.
    Kiriukhin M; Tyurin M
    J Appl Microbiol; 2013 Apr; 114(4):1033-45. PubMed ID: 23289641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox controls metabolic robustness in the gas-fermenting acetogen
    Mahamkali V; Valgepea K; de Souza Pinto Lemgruber R; Plan M; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13168-13175. PubMed ID: 32471945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas fermentation: cellular engineering possibilities and scale up.
    Heijstra BD; Leang C; Juminaga A
    Microb Cell Fact; 2017 Apr; 16(1):60. PubMed ID: 28403896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.