These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 33620138)
1. In Situ Formation of 3D Conductive and Cell-Laden Graphene Hydrogel for Electrically Regulating Cellular Behavior. Chen X; Ranjan VD; Liu S; Liang YN; Lim JSK; Chen H; Hu X; Zhang Y Macromol Biosci; 2021 Apr; 21(4):e2000374. PubMed ID: 33620138 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. Zhang H; Ren P; Yang F; Chen J; Wang C; Zhou Y; Fu J J Mater Chem B; 2020 Dec; 8(46):10549-10558. PubMed ID: 33125024 [TBL] [Abstract][Full Text] [Related]
3. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Liu F; Li W; Liu H; Yuan T; Yang Y; Zhou W; Hu Y; Yang Z Macromol Biosci; 2021 Apr; 21(4):e2000398. PubMed ID: 33624936 [TBL] [Abstract][Full Text] [Related]
4. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Mousavi A; Mashayekhan S; Baheiraei N; Pourjavadi A Int J Biol Macromol; 2021 Jun; 180():692-708. PubMed ID: 33753199 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
6. Decoration of electrical conductive polyurethane-polyaniline/polyvinyl alcohol matrixes with mussel-inspired polydopamine for bone tissue engineering. Ghorbani F; Ghalandari B; Khan AL; Li D; Zamanian A; Yu B Biotechnol Prog; 2020 Nov; 36(6):e3043. PubMed ID: 32592333 [TBL] [Abstract][Full Text] [Related]
7. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. Liu X; Miller AL; Park S; Waletzki BE; Zhou Z; Terzic A; Lu L ACS Appl Mater Interfaces; 2017 May; 9(17):14677-14690. PubMed ID: 28406608 [TBL] [Abstract][Full Text] [Related]
8. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919 [TBL] [Abstract][Full Text] [Related]
9. Bioprinting of a Cell-Laden Conductive Hydrogel Composite. Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791 [TBL] [Abstract][Full Text] [Related]
10. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474 [TBL] [Abstract][Full Text] [Related]
11. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441 [TBL] [Abstract][Full Text] [Related]
13. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]