These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 33620185)

  • 21. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2239-46.e2. PubMed ID: 25102384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Step Ergometer Training Augmented With Functional Electrical Stimulation in Individuals With Chronic Spinal Cord Injury: A Feasibility Study.
    Tefertiller C; Gerber D
    Artif Organs; 2017 Nov; 41(11):E196-E202. PubMed ID: 29148128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Exercise-Based Interventions on Urogenital Outcomes in Persons with Spinal Cord Injury: A Systematic Review and Meta-Analysis.
    Zhou X; Williams AMM; Lam T
    J Neurotrauma; 2021 May; 38(9):1225-1241. PubMed ID: 33499737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial.
    Skiadopoulos A; Famodimu GO; Solomon SK; Agarwal P; Harel NY; Knikou M
    Trials; 2023 Feb; 24(1):145. PubMed ID: 36841773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noninvasive Electromagnetic Neuromodulation of the Central and Peripheral Nervous System for Upper-Limb Motor Strength and Functionality in Individuals with Cervical Spinal Cord Injury: A Systematic Review and Meta-Analysis.
    García-Alén L; Ros-Alsina A; Sistach-Bosch L; Wright M; Kumru H
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectiveness of over-ground robotic locomotor training in improving walking performance, cardiovascular demands, secondary complications and user-satisfaction in individuals with spinal cord injuries: A systematic review.
    Shackleton C; Evans R; Shamley D; West S; Albertus Y
    J Rehabil Med; 2019 Oct; 51(10):723-733. PubMed ID: 31511902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Independent community walking after a short protocol of repetitive transcranial magnetic stimulation associated with body weight-support treadmill training in a patient with chronic spinal cord injury: a case report.
    Nogueira F; Shirahige L; Brito R; Monte-Silva K
    Physiother Theory Pract; 2022 Jun; 38(6):839-845. PubMed ID: 32787480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.
    Singh H; Unger J; Zariffa J; Pakosh M; Jaglal S; Craven BC; Musselman KE
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):704-715. PubMed ID: 29334467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review.
    Mehrholz J; Harvey LA; Thomas S; Elsner B
    Spinal Cord; 2017 Aug; 55(8):722-729. PubMed ID: 28398300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of robot-assisted gait training on cardiopulmonary function and lower extremity strength in individuals with spinal cord injury: A systematic review and meta-analysis.
    Wan C; Huang S; Wang X; Ge P; Wang Z; Zhang Y; Li Y; Su B
    J Spinal Cord Med; 2024 Jan; 47(1):6-14. PubMed ID: 36972206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial.
    Dobkin B; Barbeau H; Deforge D; Ditunno J; Elashoff R; Apple D; Basso M; Behrman A; Harkema S; Saulino M; Scott M;
    Neurorehabil Neural Repair; 2007; 21(1):25-35. PubMed ID: 17172551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic responses to 4 different body weight-supported locomotor training approaches in persons with incomplete spinal cord injury.
    Kressler J; Nash MS; Burns PA; Field-Fote EC
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1436-42. PubMed ID: 23473703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Clinical effects of high frequency repeated transcranial magnetic stimulation therapy on dyskinesia in patients with incomplete spinal cord injury:a Meta-analysis].
    Gao ZC; Niu BB; Gu MC; Li YH; Liu JT; Wang YB; He XJ
    Zhongguo Gu Shang; 2018 Jan; 31(1):47-55. PubMed ID: 29533037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of locomotor training in children with spinal cord injury: a systematic review.
    Donenberg JG; Fetters L; Johnson R
    Dev Neurorehabil; 2019 May; 22(4):272-287. PubMed ID: 29920126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical Benefits and System Design of FES-Rowing Exercise for Rehabilitation of Individuals with Spinal Cord Injury: A Systematic Review.
    Ye G; Grabke EP; Pakosh M; Furlan JC; Masani K
    Arch Phys Med Rehabil; 2021 Aug; 102(8):1595-1605. PubMed ID: 33556345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robotic locomotor training in a low-resource setting: a randomized pilot and feasibility trial.
    Shackleton C; Evans R; West S; Bantjes J; Swartz L; Derman W; Albertus Y
    Disabil Rehabil; 2024 Jul; 46(15):3363-3372. PubMed ID: 37605978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury.
    Zewdie ET; Roy FD; Yang JF; Gorassini MA
    Prog Brain Res; 2015; 218():127-55. PubMed ID: 25890135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.