BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33620226)

  • 1. Straightforward Access to Anthrone Functionalized Benzylic Amines via Organocatalytic 1,2-Addition of Anthrones to Imines at Ambient Temperature.
    Das S; Bhowmik A; Sarkar W; Mishra A; Deb I
    J Org Chem; 2021 Mar; 86(5):4131-4142. PubMed ID: 33620226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.
    Wendlandt AE; Stahl SS
    Org Lett; 2012 Jun; 14(11):2850-3. PubMed ID: 22594886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic activation of sennoside C in mice: synergistic action of anthrones.
    Yamauchi K; Shinano K; Nakajima K; Yagi T; Kuwano S
    J Pharm Pharmacol; 1992 Dec; 44(12):973-6. PubMed ID: 1361561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squaramide-catalysed asymmetric cascade aza-Michael/Michael addition reaction for the synthesis of chiral trisubstituted pyrrolidines.
    Zhao BL; Lin Y; Yan HH; Du DM
    Org Biomol Chem; 2015 Dec; 13(46):11351-61. PubMed ID: 26426388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light-induced selective photocatalytic aerobic oxidation of amines into imines on TiO2.
    Lang X; Ma W; Zhao Y; Chen C; Ji H; Zhao J
    Chemistry; 2012 Feb; 18(9):2624-31. PubMed ID: 22271403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereospecific Nucleophilic Substitution of Enantioenriched Tertiary Benzylic Amines via in Situ Activation with Benzyne.
    Gui Y; Tian SK
    Org Lett; 2017 Apr; 19(7):1554-1557. PubMed ID: 28333467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.
    So MH; Liu Y; Ho CM; Che CM
    Chem Asian J; 2009 Oct; 4(10):1551-61. PubMed ID: 19777526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.
    Jiang G; Chen J; Huang JS; Che CM
    Org Lett; 2009 Oct; 11(20):4568-71. PubMed ID: 19810764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting Deep Eutectic Solvents and Organolithium Reagent Partnerships: Chemoselective Ultrafast Addition to Imines and Quinolines Under Aerobic Ambient Temperature Conditions.
    Vidal C; García-Álvarez J; Hernán-Gómez A; Kennedy AR; Hevia E
    Angew Chem Int Ed Engl; 2016 Dec; 55(52):16145-16148. PubMed ID: 27891818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organocatalytic asymmetric Michael addition of α-alkylidene succinimides to nitrostyrenes.
    Zhao BL; Zhang D; Liu L; Du DM
    Org Biomol Chem; 2016 Jul; 14(26):6337-45. PubMed ID: 27272983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addition of Highly Polarized Organometallic Compounds to N-tert-Butanesulfinyl Imines in Deep Eutectic Solvents under Air: Preparation of Chiral Amines of Pharmaceutical Interest.
    Cicco L; Salomone A; Vitale P; Ríos-Lombardía N; González-Sabín J; García-Álvarez J; Perna FM; Capriati V
    ChemSusChem; 2020 Jul; 13(14):3583-3588. PubMed ID: 32445433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a metalloenzyme-like cooperative catalytic system of metal nanoclusters and catechol derivatives for the aerobic oxidation of amines.
    Yuan H; Yoo WJ; Miyamura H; Kobayashi S
    J Am Chem Soc; 2012 Aug; 134(34):13970-3. PubMed ID: 22852772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Reductive Arylation of Imines with Electron-Deficient (Hetero) Arenes via Electrosynthesis to Access Benzylic Amines.
    Zeng WM; He YH; Guan Z
    Org Lett; 2022 Oct; 24(39):7178-7182. PubMed ID: 36148976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An advance on exploring N-tert-butanesulfinyl imines in asymmetric synthesis of chiral amines.
    Lin GQ; Xu MH; Zhong YW; Sun XW
    Acc Chem Res; 2008 Jul; 41(7):831-40. PubMed ID: 18533688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in organocatalyzed synthesis of organic compounds.
    Zafar A; Iqbal MA; Iram G; Shoukat US; Jamil F; Saleem M; Yousif M; Abidin ZU; Asad M
    RSC Adv; 2024 Jun; 14(28):20365-20389. PubMed ID: 38919284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relationships for the formation of secondary radicals and inhibition of keratinocyte proliferation by 9-anthrones.
    Hayden PJ; Free KE; Chignell CF
    Mol Pharmacol; 1994 Jul; 46(1):186-98. PubMed ID: 8058052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral bicyclic guanidine-catalyzed enantioselective reactions of anthrones.
    Shen J; Nguyen TT; Goh YP; Ye W; Fu X; Xu J; Tan CH
    J Am Chem Soc; 2006 Oct; 128(42):13692-3. PubMed ID: 17044689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of benzylic and allylic organozinc and Grignard reagents to resin-bound imines to provide alpha-branched secondary amines bearing a wide variety of functional groups. Utility in the synthesis of beta-3 adrenergic receptor agonists.
    Wu G; Cai ZW; Bednarz MS; Kocy OR; Gavai AV; Godfrey JD; Washburn WN; Poss MA; Sher PM
    J Comb Chem; 2005; 7(1):99-108. PubMed ID: 15638488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.