These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33620313)

  • 1. Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in
    Bassetto CA; Carvalho-de-Souza JL; Bezanilla F
    Elife; 2021 Feb; 10():. PubMed ID: 33620313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S4-S5 linker movement during activation and inactivation in voltage-gated K
    Kalstrup T; Blunck R
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6751-E6759. PubMed ID: 29959207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K
    Carvalho-de-Souza JL; Bezanilla F
    J Gen Physiol; 2018 Feb; 150(2):307-321. PubMed ID: 29321262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncanonical mechanism of voltage sensor coupling to pore revealed by tandem dimers of Shaker.
    Carvalho-de-Souza JL; Bezanilla F
    Nat Commun; 2019 Aug; 10(1):3584. PubMed ID: 31395867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nonconducting W434F mutant adopts upon membrane depolarization an inactivated-like state that differs from wild-type Shaker-IR potassium channels.
    Coonen L; Martinez-Morales E; Van De Sande DV; Snyders DJ; Cortes DM; Cuello LG; Labro AJ
    Sci Adv; 2022 Sep; 8(37):eabn1731. PubMed ID: 36112676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F.
    Starkus JG; Kuschel L; Rayner MD; Heinemann SH
    J Gen Physiol; 1998 Jul; 112(1):85-93. PubMed ID: 9649585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity.
    Caprini M; Fava M; Valente P; Fernandez-Ballester G; Rapisarda C; Ferroni S; Ferrer-Montiel A
    J Biol Chem; 2005 May; 280(18):18253-64. PubMed ID: 15749711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A direct demonstration of closed-state inactivation of K+ channels at low pH.
    Claydon TW; Vaid M; Rezazadeh S; Kwan DC; Kehl SJ; Fedida D
    J Gen Physiol; 2007 May; 129(5):437-55. PubMed ID: 17470663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel.
    Zhao J; Blunck R
    Elife; 2016 Oct; 5():. PubMed ID: 27710769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The EAG Voltage-Dependent K
    Barros F; de la Peña P; Domínguez P; Sierra LM; Pardo LA
    Front Pharmacol; 2020; 11():411. PubMed ID: 32351384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrophobic element secures S4 voltage sensor in position in resting Shaker K+ channels.
    Yang YC; Own CJ; Kuo CC
    J Physiol; 2007 Aug; 582(Pt 3):1059-72. PubMed ID: 17412765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkanols inhibit voltage-gated K(+) channels via a distinct gating modifying mechanism that prevents gate opening.
    Martínez-Morales E; Kopljar I; Snyders DJ; Labro AJ
    Sci Rep; 2015 Nov; 5():17402. PubMed ID: 26616025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation.
    Conti L; Renhorn J; Gabrielsson A; Turesson F; Liin SI; Lindahl E; Elinder F
    Sci Rep; 2016 Jun; 6():27562. PubMed ID: 27278891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain.
    Haddad GA; Blunck R
    J Gen Physiol; 2011 May; 137(5):455-72. PubMed ID: 21518834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of individual subunits to the coupling of the voltage sensor to pore opening in Shaker K channels: effect of ILT mutations in heterotetramers.
    Gagnon DG; Bezanilla F
    J Gen Physiol; 2010 Nov; 136(5):555-68. PubMed ID: 20974773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage clamp fluorimetry reveals a novel outer pore instability in a mammalian voltage-gated potassium channel.
    Vaid M; Claydon TW; Rezazadeh S; Fedida D
    J Gen Physiol; 2008 Aug; 132(2):209-22. PubMed ID: 18625849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel.
    Neale EJ; Elliott DJ; Hunter M; Sivaprasadarao A
    J Biol Chem; 2003 Aug; 278(31):29079-85. PubMed ID: 12883074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels.
    Olcese R; Latorre R; Toro L; Bezanilla F; Stefani E
    J Gen Physiol; 1997 Nov; 110(5):579-89. PubMed ID: 9348329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.
    Soler-Llavina GJ; Chang TH; Swartz KJ
    Neuron; 2006 Nov; 52(4):623-34. PubMed ID: 17114047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.