These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 33620423)
1. An enhanced loss function simplifies the deep learning model for characterizing the 3D organoid models. Winkelmaier G; Parvin B Bioinformatics; 2021 Sep; 37(18):3084-3085. PubMed ID: 33620423 [TBL] [Abstract][Full Text] [Related]
2. A deep learning model for detection and tracking in high-throughput images of organoid. Bian X; Li G; Wang C; Liu W; Lin X; Chen Z; Cheung M; Luo X Comput Biol Med; 2021 Jul; 134():104490. PubMed ID: 34102401 [TBL] [Abstract][Full Text] [Related]
3. YY1 is a cis-regulator in the organoid models of high mammographic density. Cheng Q; Khoshdeli M; Ferguson BS; Jabbari K; Zang C; Parvin B Bioinformatics; 2020 Mar; 36(6):1663-1667. PubMed ID: 31688895 [TBL] [Abstract][Full Text] [Related]
4. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
5. Integrated profiling of three dimensional cell culture models and 3D microscopy. Bilgin CC; Kim S; Leung E; Chang H; Parvin B Bioinformatics; 2013 Dec; 29(23):3087-93. PubMed ID: 24045773 [TBL] [Abstract][Full Text] [Related]
6. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images. Chang YH; Yokota H; Abe K; Tasi MD; Chu SL J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710 [TBL] [Abstract][Full Text] [Related]
7. Deep-Orga: An improved deep learning-based lightweight model for intestinal organoid detection. Leng B; Jiang H; Wang B; Wang J; Luo G Comput Biol Med; 2024 Feb; 169():107847. PubMed ID: 38141452 [TBL] [Abstract][Full Text] [Related]
8. A Cascaded Deep Learning Framework for Segmentation of Nuclei in Digital Histology Images. Saednia K; Tran WT; Sadeghi-Naini A Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4764-4767. PubMed ID: 36086360 [TBL] [Abstract][Full Text] [Related]
9. Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. Kulkeaw K; Tubsuwan A; Tongkrajang N; Whangviboonkij N PeerJ; 2020; 8():e9968. PubMed ID: 33133779 [TBL] [Abstract][Full Text] [Related]
10. Deep-learning method for data association in particle tracking. Yao Y; Smal I; Grigoriev I; Akhmanova A; Meijering E Bioinformatics; 2020 Dec; 36(19):4935-4941. PubMed ID: 32879934 [TBL] [Abstract][Full Text] [Related]
11. Improving and evaluating deep learning models of cellular organization. Sun H; Fu X; Abraham S; Jin S; Murphy RF Bioinformatics; 2022 Nov; 38(23):5299-5306. PubMed ID: 36264139 [TBL] [Abstract][Full Text] [Related]
12. D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images. Abdul L; Xu J; Sotra A; Chaudary A; Gao J; Rajasekar S; Anvari N; Mahyar H; Zhang B Lab Chip; 2022 Oct; 22(21):4118-4128. PubMed ID: 36200406 [TBL] [Abstract][Full Text] [Related]
13. Deep reinforcement learning of cell movement in the early stage of C.elegans embryogenesis. Wang Z; Wang D; Li C; Xu Y; Li H; Bao Z Bioinformatics; 2018 Sep; 34(18):3169-3177. PubMed ID: 29701853 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Cell and Organoid-Level Analysis of Patient-Derived 3D Organoids to Evaluate Tumor Cell Growth Dynamics and Drug Response. Kim S; Choung S; Sun RX; Ung N; Hashemi N; Fong EJ; Lau R; Spiller E; Gasho J; Foo J; Mumenthaler SM SLAS Discov; 2020 Aug; 25(7):744-754. PubMed ID: 32349587 [TBL] [Abstract][Full Text] [Related]
16. Establishment of patient-derived three-dimensional organoid culture in renal cell carcinoma. Na JC; Kim JH; Kim SY; Gu YR; Jun DY; Lee HH; Yoon YE; Choi KH; Hong SJ; Han WK Investig Clin Urol; 2020 Mar; 61(2):216-223. PubMed ID: 32158973 [TBL] [Abstract][Full Text] [Related]
17. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
18. Marker-controlled watershed with deep edge emphasis and optimized H-minima transform for automatic segmentation of densely cultivated 3D cell nuclei. Kaseva T; Omidali B; Hippeläinen E; Mäkelä T; Wilppu U; Sofiev A; Merivaara A; Yliperttula M; Savolainen S; Salli E BMC Bioinformatics; 2022 Jul; 23(1):289. PubMed ID: 35864453 [TBL] [Abstract][Full Text] [Related]
19. Context-aware learning for cancer cell nucleus recognition in pathology images. Bai T; Xu J; Zhang Z; Guo S; Luo X Bioinformatics; 2022 May; 38(10):2892-2898. PubMed ID: 35561198 [TBL] [Abstract][Full Text] [Related]
20. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry. Li C; Wang J; Niu Z; Yao J; Zeng X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]