BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33621057)

  • 1. Biotin-NeutrAvidin Mediated Immobilization of Polymer Micro- and Nanoparticles on T Lymphocytes.
    Ayer M; Burri O; Guiet R; Seitz A; Kaba E; Engelhardt B; Klok HA
    Bioconjug Chem; 2021 Mar; 32(3):541-552. PubMed ID: 33621057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes.
    Thomsen T; Reissmann R; Kaba E; Engelhardt B; Klok HA
    Biomacromolecules; 2021 Aug; 22(8):3416-3430. PubMed ID: 34170107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T Cell-Mediated Transport of Polymer Nanoparticles across the Blood-Brain Barrier.
    Ayer M; Schuster M; Gruber I; Blatti C; Kaba E; Enzmann G; Burri O; Guiet R; Seitz A; Engelhardt B; Klok HA
    Adv Healthc Mater; 2021 Jan; 10(2):e2001375. PubMed ID: 33241667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of contact lenses bearing surface-immobilized layers of intact liposomes.
    Danion A; Brochu H; Martin Y; Vermette P
    J Biomed Mater Res A; 2007 Jul; 82(1):41-51. PubMed ID: 17265438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Cell Surface Modification and Analysis of Nanoparticle-Modified Living Cells.
    Thomsen T; Klok HA
    ACS Appl Bio Mater; 2021 Mar; 4(3):2293-2306. PubMed ID: 35014352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing immobilization of avidin on surface-modified magnetic nanoparticles: characterization and application of protein-immobilized nanoparticles.
    Yang T; Sun S; Ma M; Lin Q; Zhang L; Li Y; Luo F
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):2023-34. PubMed ID: 26224655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of biotin-(poly(ethylene glycol))amine to poly(D,L-lactide-co-glycolide) nanoparticles for versatile surface modification.
    Weiss B; Schneider M; Muys L; Taetz S; Neumann D; Schaefer UF; Lehr CM
    Bioconjug Chem; 2007; 18(4):1087-94. PubMed ID: 17590034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting.
    Nobs L; Buchegger F; Gurny R; Allémann E
    Eur J Pharm Biopharm; 2004 Nov; 58(3):483-90. PubMed ID: 15451522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons.
    Townsend SA; Evrony GD; Gu FX; Schulz MP; Brown RH; Langer R
    Biomaterials; 2007 Dec; 28(34):5176-84. PubMed ID: 17854886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.
    Bottini M; D'Annibale F; Magrini A; Cerignoli F; Arimura Y; Dawson MI; Bergamaschi E; Rosato N; Bergamaschi A; Mustelin T
    Int J Nanomedicine; 2007; 2(2):227-33. PubMed ID: 17722550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes.
    Dinauer N; Balthasar S; Weber C; Kreuter J; Langer K; von Briesen H
    Biomaterials; 2005 Oct; 26(29):5898-906. PubMed ID: 15949555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers.
    Vermette P; Gengenbach T; Divisekera U; Kambouris PA; Griesser HJ; Meagher L
    J Colloid Interface Sci; 2003 Mar; 259(1):13-26. PubMed ID: 12651129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification.
    Magro M; Faralli A; Baratella D; Bertipaglia I; Giannetti S; Salviulo G; Zboril R; Vianello F
    Langmuir; 2012 Oct; 28(43):15392-401. PubMed ID: 23057670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active targeting behaviors of biotinylated pluronic/poly(lactic acid) nanoparticles in vitro through three-step biotin-avidin interaction.
    Xiong XY; Gong YC; Li ZL; Li YP; Guo L
    J Biomater Sci Polym Ed; 2011; 22(12):1607-19. PubMed ID: 20699057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of an avidin-biotin binding system on chondrocyte adhesion and growth on biodegradable polymers.
    Tsai WB; Wang MC
    Macromol Biosci; 2005 Mar; 5(3):214-21. PubMed ID: 15768440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of silk fibroin with NeutrAvidin and biotin.
    Wang X; Kaplan DL
    Macromol Biosci; 2011 Jan; 11(1):100-10. PubMed ID: 20824692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin-avidin binding kinetics measured by single-molecule imaging.
    Wayment JR; Harris JM
    Anal Chem; 2009 Jan; 81(1):336-42. PubMed ID: 19117461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ IR spectroscopic studies of the avidin-biotin bioconjugation reaction on CdS particle films.
    Young AG; McQuillan AJ; Green DP
    Langmuir; 2009 Jul; 25(13):7416-23. PubMed ID: 19354218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of various spacers between biotin and the phospholipid headgroup on immobilization and sedimentation of biotinylated phospholipid-containing liposomes facilitated by avidin-biotin interactions.
    Sakamoto Y; Kikuchi K; Umeda K; Nakanishi H
    J Biochem; 2017 Sep; 162(3):221-226. PubMed ID: 28444248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells.
    Thomsen T; Ayoub AB; Psaltis D; Klok HA
    Biomacromolecules; 2021 Jan; 22(1):190-200. PubMed ID: 32869972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.