These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 33621079)
1. Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags. Zinn N; Werner T; Doce C; Mathieson T; Boecker C; Sweetman G; Fufezan C; Bantscheff M J Proteome Res; 2021 Mar; 20(3):1792-1801. PubMed ID: 33621079 [TBL] [Abstract][Full Text] [Related]
2. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Franken H; Mathieson T; Childs D; Sweetman GM; Werner T; Tögel I; Doce C; Gade S; Bantscheff M; Drewes G; Reinhard FB; Huber W; Savitski MM Nat Protoc; 2015 Oct; 10(10):1567-93. PubMed ID: 26379230 [TBL] [Abstract][Full Text] [Related]
3. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Li J; Van Vranken JG; Pontano Vaites L; Schweppe DK; Huttlin EL; Etienne C; Nandhikonda P; Viner R; Robitaille AM; Thompson AH; Kuhn K; Pike I; Bomgarden RD; Rogers JC; Gygi SP; Paulo JA Nat Methods; 2020 Apr; 17(4):399-404. PubMed ID: 32203386 [TBL] [Abstract][Full Text] [Related]
4. Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States. Sauer P; Bantscheff M Methods Mol Biol; 2023; 2718():73-98. PubMed ID: 37665455 [TBL] [Abstract][Full Text] [Related]
5. Boosting Detection of Low-Abundance Proteins in Thermal Proteome Profiling Experiments by Addition of an Isobaric Trigger Channel to TMT Multiplexes. Peck Justice SA; McCracken NA; Victorino JF; Qi GD; Wijeratne AB; Mosley AL Anal Chem; 2021 May; 93(18):7000-7010. PubMed ID: 33908254 [TBL] [Abstract][Full Text] [Related]
6. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Savitski MM; Zinn N; Faelth-Savitski M; Poeckel D; Gade S; Becher I; Muelbaier M; Wagner AJ; Strohmer K; Werner T; Melchert S; Petretich M; Rutkowska A; Vappiani J; Franken H; Steidel M; Sweetman GM; Gilan O; Lam EYN; Dawson MA; Prinjha RK; Grandi P; Bergamini G; Bantscheff M Cell; 2018 Mar; 173(1):260-274.e25. PubMed ID: 29551266 [TBL] [Abstract][Full Text] [Related]
7. Automated 16-Plex Plasma Proteomics with Real-Time Search and Ion Mobility Mass Spectrometry Enables Large-Scale Profiling in Naked Mole-Rats and Mice. Gaun A; Lewis Hardell KN; Olsson N; O'Brien JJ; Gollapudi S; Smith M; McAlister G; Huguet R; Keyser R; Buffenstein R; McAllister FE J Proteome Res; 2021 Feb; 20(2):1280-1295. PubMed ID: 33499602 [TBL] [Abstract][Full Text] [Related]
8. Multiplexed Quantitative Proteomics for High-Throughput Comprehensive Proteome Comparisons of Human Cell Lines. Edwards A; Haas W Methods Mol Biol; 2016; 1394():1-13. PubMed ID: 26700037 [TBL] [Abstract][Full Text] [Related]
9. Identifying drug targets with thermal proteome profiling using IBT-16plex. Shi Z; Ren Y; Li S; Hao P Rapid Commun Mass Spectrom; 2024 Jan; 38(1):e9673. PubMed ID: 38073198 [TBL] [Abstract][Full Text] [Related]
10. High-Throughput Quantitative Proteomics Enabled by Mass Defect-Based 12-Plex DiLeu Isobaric Tags. Frost DC; Li L Methods Mol Biol; 2016; 1410():169-94. PubMed ID: 26867744 [TBL] [Abstract][Full Text] [Related]
11. Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins. Childs D; Bach K; Franken H; Anders S; Kurzawa N; Bantscheff M; Savitski MM; Huber W Mol Cell Proteomics; 2019 Dec; 18(12):2506-2515. PubMed ID: 31582558 [TBL] [Abstract][Full Text] [Related]
13. A Comparison of Two Stability Proteomics Methods for Drug Target Identification in OnePot 2D Format. Xu Y; West GM; Abdelmessih M; Troutman MD; Everley RA ACS Chem Biol; 2021 Aug; 16(8):1445-1455. PubMed ID: 34374519 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. George AL; Sidgwick FR; Watt JE; Martin MP; Trost M; Marín-Rubio JL; Dueñas ME J Proteome Res; 2023 Aug; 22(8):2629-2640. PubMed ID: 37439223 [TBL] [Abstract][Full Text] [Related]
15. On the utility of ultrafast MS1-only proteomics in drug target discovery studies based on thermal proteome profiling method. Fedorov II; Bubis JA; Kazakova EM; Lobas AA; Ivanov MV; Emekeeva DD; Tarasova IA; Nazarov AA; Gorshkov MV Anal Bioanal Chem; 2024 Jul; 416(18):4083-4089. PubMed ID: 38744720 [TBL] [Abstract][Full Text] [Related]
16. Monitoring Dynamic Changes of the Cell Surface Glycoproteome by Quantitative Proteomics. Kalxdorf M; Eberl HC; Bantscheff M Methods Mol Biol; 2017; 1647():47-59. PubMed ID: 28808994 [TBL] [Abstract][Full Text] [Related]
17. Multiplexed quantitative phosphoproteomics of cell line and tissue samples. Kreuzer J; Edwards A; Haas W Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085 [TBL] [Abstract][Full Text] [Related]
18. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Mateus A; Määttä TA; Savitski MM Proteome Sci; 2016; 15():13. PubMed ID: 28652855 [TBL] [Abstract][Full Text] [Related]
19. Active Instrument Engagement Combined with a Real-Time Database Search for Improved Performance of Sample Multiplexing Workflows. Erickson BK; Mintseris J; Schweppe DK; Navarrete-Perea J; Erickson AR; Nusinow DP; Paulo JA; Gygi SP J Proteome Res; 2019 Mar; 18(3):1299-1306. PubMed ID: 30658528 [TBL] [Abstract][Full Text] [Related]
20. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues. Ma TP; Izrael-Tomasevic A; Mroue R; Budayeva H; Malhotra S; Raisner R; Evangelista M; Rose CM; Kirkpatrick DS; Yu K J Proteome Res; 2023 Jul; 22(7):2218-2231. PubMed ID: 37285454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]