These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33621085)

  • 1. Low-Scaling
    Wilhelm J; Seewald P; Golze D
    J Chem Theory Comput; 2021 Mar; 17(3):1662-1677. PubMed ID: 33621085
    [No Abstract]   [Full Text] [Related]  

  • 2. Toward GW Calculations on Thousands of Atoms.
    Wilhelm J; Golze D; Talirz L; Hutter J; Pignedoli CA
    J Phys Chem Lett; 2018 Jan; 9(2):306-312. PubMed ID: 29280376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Space Based Benchmark of G
    Gao W; Chelikowsky JR
    J Chem Theory Comput; 2019 Oct; 15(10):5299-5307. PubMed ID: 31424933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic GW Calculations for Molecules.
    Vlček V; Rabani E; Neuhauser D; Baer R
    J Chem Theory Comput; 2017 Oct; 13(10):4997-5003. PubMed ID: 28876912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating Core-Level
    Panadés-Barrueta RL; Golze D
    J Chem Theory Comput; 2023 Aug; 19(16):5450-5464. PubMed ID: 37566917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework.
    Delesma FA; Leucke M; Golze D; Rinke P
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38205851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Molecular GW Calculations: Valence and Core Spectra.
    Mejia-Rodriguez D; Kunitsa A; Aprà E; Govind N
    J Chem Theory Comput; 2021 Dec; 17(12):7504-7517. PubMed ID: 34855381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Electron BSE@
    Yao Y; Golze D; Rinke P; Blum V; Kanai Y
    J Chem Theory Comput; 2022 Mar; 18(3):1569-1583. PubMed ID: 35138865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural virtual orbitals for the GW method in the random-phase approximation and beyond.
    Monzel L; Holzer C; Klopper W
    J Chem Phys; 2023 Apr; 158(14):144102. PubMed ID: 37061489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules.
    Förster A; Visscher L
    Front Chem; 2021; 9():736591. PubMed ID: 34540804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-Level Binding Energies from GW: An Efficient Full-Frequency Approach within a Localized Basis.
    Golze D; Wilhelm J; van Setten MJ; Rinke P
    J Chem Theory Comput; 2018 Sep; 14(9):4856-4869. PubMed ID: 30092140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GW100: Benchmarking G0W0 for Molecular Systems.
    van Setten MJ; Caruso F; Sharifzadeh S; Ren X; Scheffler M; Liu F; Lischner J; Lin L; Deslippe JR; Louie SG; Yang C; Weigend F; Neaton JB; Evers F; Rinke P
    J Chem Theory Comput; 2015 Dec; 11(12):5665-87. PubMed ID: 26642984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark of GW Approaches for the GW100 Test Set.
    Caruso F; Dauth M; van Setten MJ; Rinke P
    J Chem Theory Comput; 2016 Oct; 12(10):5076-5087. PubMed ID: 27631585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A "moment-conserving" reformulation of GW theory.
    Scott CJC; Backhouse OJ; Booth GH
    J Chem Phys; 2023 Mar; 158(12):124102. PubMed ID: 37003769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials.
    Cho Y; Bintrim SJ; Berkelbach TC
    J Chem Theory Comput; 2022 Jun; 18(6):3438-3446. PubMed ID: 35544591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD.
    Jacquemin D; Duchemin I; Blase X
    J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.
    Graf D; Beuerle M; Schurkus HF; Luenser A; Savasci G; Ochsenfeld C
    J Chem Theory Comput; 2018 May; 14(5):2505-2515. PubMed ID: 29658715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory.
    Saitow M; Becker U; Riplinger C; Valeev EF; Neese F
    J Chem Phys; 2017 Apr; 146(16):164105. PubMed ID: 28456208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmark of
    Li J; Jin Y; Rinke P; Yang W; Golze D
    J Chem Theory Comput; 2022 Dec; 18(12):7570-7585. PubMed ID: 36322136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.