BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33621302)

  • 1. Effect of polymeric excipients on nucleation and crystal growth kinetics of amorphous fluconazole.
    Zhang J; Liu Z; Wu H; Cai T
    Biomater Sci; 2021 Jun; 9(12):4308-4316. PubMed ID: 33621302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Polymers on Cocrystal Growth in a Drug-Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth.
    Luo M; Chen A; Huang C; Guo M; Cai T
    Mol Pharm; 2024 Jul; 21(7):3591-3602. PubMed ID: 38818946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems.
    Tian Y; Jones DS; Andrews GP
    Mol Pharm; 2015 Apr; 12(4):1180-92. PubMed ID: 25692314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method to evaluate the effect of contact with excipients on the surface crystallization of amorphous drugs.
    Zhang SW; Yu L; Huang J; Hussain MA; Derdour L; Qian F; de Villiers MM
    AAPS PharmSciTech; 2014 Dec; 15(6):1516-26. PubMed ID: 25037732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Polymer Enrichment at the Crystal-Liquid Interface on Crystallization Kinetics of Amorphous Solid Dispersions.
    Zhang J; Shi Q; Tao J; Peng Y; Cai T
    Mol Pharm; 2019 Mar; 16(3):1385-1396. PubMed ID: 30716277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs.
    Ozaki S; Kushida I; Yamashita T; Hasebe T; Shirai O; Kano K
    J Pharm Sci; 2013 Jul; 102(7):2273-81. PubMed ID: 23658029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of Polymeric Additives on Nucleation and Crystal Growth of Indomethacin from Supersaturated Solutions.
    Cheng H; Mao L; Zhang S; Lv H
    AAPS PharmSciTech; 2019 May; 20(5):193. PubMed ID: 31115746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical stability of amorphous pharmaceutical solids: Nucleation, crystal growth, phase separation and effects of the polymers.
    Shi Q; Li F; Yeh S; Wang Y; Xin J
    Int J Pharm; 2020 Nov; 590():119925. PubMed ID: 33011255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.
    Sarode AL; Wang P; Obara S; Worthen DR
    Eur J Pharm Biopharm; 2014 Apr; 86(3):351-60. PubMed ID: 24161655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pairwise polymer blends for oral drug delivery.
    Marks JA; Wegiel LA; Taylor LS; Edgar KJ
    J Pharm Sci; 2014 Sep; 103(9):2871-2883. PubMed ID: 24823790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melt Crystallization of Indomethacin Polymorphs in the Presence of Poly(ethylene oxide): Selective Enrichment of the Polymer at the Crystal-Liquid Interface.
    Zhang J; Shi Q; Guo M; Liu Z; Cai T
    Mol Pharm; 2020 Jun; 17(6):2064-2071. PubMed ID: 32298128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture.
    Konno H; Taylor LS
    Pharm Res; 2008 Apr; 25(4):969-78. PubMed ID: 17520180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels.
    Sun DD; Ju TC; Lee PI
    Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Extent of Supersaturation on the Evolution of Kinetic Solubility Profiles.
    Han YR; Lee PI
    Mol Pharm; 2017 Jan; 14(1):206-220. PubMed ID: 28043130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine.
    Konno H; Taylor LS
    J Pharm Sci; 2006 Dec; 95(12):2692-705. PubMed ID: 16892209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of polymer excipients on the dissolution and recrystallization behavior of ketoconazole: Application, variation and practical aspects of a pH shift method.
    Ullrich A; Schiffter HA
    Eur J Pharm Biopharm; 2018 Dec; 133():20-30. PubMed ID: 30261267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and kinetic evaluation of the impact of polymer excipients on storage stability of amorphous itraconazole.
    Zhang S; Lee TWY; Chow AHL
    Int J Pharm; 2019 Jan; 555():394-403. PubMed ID: 30513399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disparities of Single-Particle Growth Rates in Buried Versus Exposed Ritonavir Crystals within Amorphous Solid Dispersions.
    Griffin SR; Takanti N; Sarkar S; Song Z; Vogt AD; Danzer GD; Simpson GJ
    Mol Pharm; 2020 Dec; 17(12):4564-4571. PubMed ID: 33151697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into the Solid-State Properties and Dissolution Profile of Spray-Dried Ternary Amorphous Solid Dispersions: A Rational Step toward the Design and Development of a Multicomponent Amorphous System.
    Baghel S; Cathcart H; O'Reilly NJ
    Mol Pharm; 2018 Sep; 15(9):3796-3812. PubMed ID: 30020788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries.
    Gift AD; Luner PE; Luedeman L; Taylor LS
    J Pharm Sci; 2008 Dec; 97(12):5198-211. PubMed ID: 18449917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.