These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 33621350)
41. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
42. Automatic stent recognition using perceptual attention U-net for quantitative intrafraction motion monitoring in pancreatic cancer radiotherapy. He X; Cai W; Li F; Zhang P; Reyngold M; Cuaron JJ; Cerviño LI; Li T; Li X Med Phys; 2022 Aug; 49(8):5283-5293. PubMed ID: 35524706 [TBL] [Abstract][Full Text] [Related]
43. Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation. Jiang J; Hu YC; Tyagi N; Wang C; Lee N; Deasy JO; Sean B; Veeraraghavan H Phys Med Biol; 2020 Oct; 65(20):205001. PubMed ID: 33027063 [TBL] [Abstract][Full Text] [Related]
44. A reciprocal learning strategy for semisupervised medical image segmentation. Zeng X; Huang R; Zhong Y; Xu Z; Liu Z; Wang Y Med Phys; 2023 Jan; 50(1):163-177. PubMed ID: 35950367 [TBL] [Abstract][Full Text] [Related]
45. Automatic segmentation and grading of ankylosing spondylitis on MR images via lightweight hybrid multi-scale convolutional neural network with reinforcement learning. Gou S; Lu Y; Tong N; Huang L; Liu N; Han Q Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34517352 [No Abstract] [Full Text] [Related]
46. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images. Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627 [TBL] [Abstract][Full Text] [Related]
47. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images. Jia H; Xia Y; Song Y; Zhang D; Huang H; Zhang Y; Cai W IEEE Trans Med Imaging; 2020 Feb; 39(2):447-457. PubMed ID: 31295109 [TBL] [Abstract][Full Text] [Related]
48. An optimized segmentation convolutional neural network with dynamic energy loss function for 3D reconstruction of lumbar spine MR images. He S; Li Q; Li X; Zhang M Comput Biol Med; 2023 Jun; 160():106839. PubMed ID: 37187132 [TBL] [Abstract][Full Text] [Related]
49. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
51. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345 [TBL] [Abstract][Full Text] [Related]
52. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network. Tomita N; Jiang S; Maeder ME; Hassanpour S Neuroimage Clin; 2020; 27():102276. PubMed ID: 32512401 [TBL] [Abstract][Full Text] [Related]
53. 2.5D transfer deep learning model for segmentation of contrast-enhancing lesions on brain magnetic resonance imaging of multiple sclerosis and neuromyelitis optica spectrum disorder. Huang L; Zhao Z; An L; Gong Y; Wang Y; Yang Q; Wang Z; Hu G; Wang Y; Guo C Quant Imaging Med Surg; 2024 Jan; 14(1):273-290. PubMed ID: 38223040 [TBL] [Abstract][Full Text] [Related]
54. [Semi-automated segmentation of a glioblastoma multiforme on brain MR images for radiotherapy planning]. Hori D; Katsuragawa S; Murakami R; Hirai T Nihon Hoshasen Gijutsu Gakkai Zasshi; 2010 Apr; 66(4):353-62. PubMed ID: 20625222 [TBL] [Abstract][Full Text] [Related]
55. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Ke L; Deng Y; Xia W; Qiang M; Chen X; Liu K; Jing B; He C; Xie C; Guo X; Lv X; Li C Oral Oncol; 2020 Nov; 110():104862. PubMed ID: 32615440 [TBL] [Abstract][Full Text] [Related]
56. An improved 3D-UNet-based brain hippocampus segmentation model based on MR images. Yang Q; Wang C; Pan K; Xia B; Xie R; Shi J BMC Med Imaging; 2024 Jul; 24(1):166. PubMed ID: 38970025 [TBL] [Abstract][Full Text] [Related]
57. Liver tumor segmentation based on 3D convolutional neural network with dual scale. Meng L; Tian Y; Bu S J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212 [TBL] [Abstract][Full Text] [Related]
58. Comparison of automatic liver volumetry performance using different types of magnetic resonance images. Saunders SL; Clark JM; Rudser K; Chauhan A; Ryder JR; Bolan PJ Magn Reson Imaging; 2022 Sep; 91():16-23. PubMed ID: 35537665 [TBL] [Abstract][Full Text] [Related]