These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 33621489)

  • 1. A not-so-simple twist of fate.
    Long AF; Stearns T
    Dev Cell; 2021 Feb; 56(4):402-404. PubMed ID: 33621489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notch signaling induces either apoptosis or cell fate change in multiciliated cells during mucociliary tissue remodeling.
    Tasca A; Helmstädter M; Brislinger MM; Haas M; Mitchell B; Walentek P
    Dev Cell; 2021 Feb; 56(4):525-539.e6. PubMed ID: 33400913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of ciliated epidermal cells during early development of Xenopus laevis using whole-mount immunostaining with an antibody against chondroitin 6-sulfate proteoglycan and anti-tubulin: transdifferentiation or metaplasia of amphibian epidermis.
    Nishikawa S; Hirata J; Sasaki F
    Histochemistry; 1992 Dec; 98(6):355-8. PubMed ID: 1293075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mab21-l3 regulates cell fate specification of multiciliate cells and ionocytes.
    Takahashi C; Kusakabe M; Suzuki T; Miyatake K; Nishida E
    Nat Commun; 2015 Jan; 6():6017. PubMed ID: 25598413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mechanism of gland formation in zebrafish involving transdifferentiation of renal epithelial cells and live cell extrusion.
    Naylor RW; Chang HG; Qubisi S; Davidson AJ
    Elife; 2018 Nov; 7():. PubMed ID: 30394875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body-specific proliferation of adult precursor cells in Xenopus larval epidermis.
    Kinoshita T; Sasaki F
    Histochemistry; 1994 Jul; 101(6):397-404. PubMed ID: 7960938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens fibre transdifferentiation in cultured larval Xenopus laevis outer cornea under the influence of neural retina-conditioned medium.
    Bosco L; Testa O; Venturini G; Willems D
    Cell Mol Life Sci; 1997 Dec; 53(11-12):921-8. PubMed ID: 9447244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.
    Hasebe T; Fujimoto K; Kajita M; Fu L; Shi YB; Ishizuya-Oka A
    Stem Cells; 2017 Apr; 35(4):1028-1039. PubMed ID: 27870267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development.
    Marra AN; Wingert RA
    Dev Biol; 2016 Mar; 411(2):231-245. PubMed ID: 26827902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression cloning of Xenopus zygote arrest 2 (Xzar2) as a novel epidermalization-promoting factor in early embryos of Xenopus laevis.
    Nakajima Y; Okamoto H; Kubo T
    Genes Cells; 2009 May; 14(5):583-95. PubMed ID: 19371384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo.
    Bharathan NK; Dickinson AJG
    Dev Biol; 2019 Jun; 450(2):115-131. PubMed ID: 30935896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple Method To Characterize the Ciliary Proteome of Multiciliated Cells.
    Sim HJ; Yun S; Kim HE; Kwon KY; Kim GH; Yun S; Kim BG; Myung K; Park TJ; Kwon T
    J Proteome Res; 2020 Jan; 19(1):391-400. PubMed ID: 31689115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-based silencing of Delta/Notch signaling promotes multiple cilia formation.
    Marcet B; Chevalier B; Coraux C; Kodjabachian L; Barbry P
    Cell Cycle; 2011 Sep; 10(17):2858-64. PubMed ID: 21857154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis.
    LaFlamme SE; Dawid IB
    Dev Biol; 1990 Feb; 137(2):414-8. PubMed ID: 1689262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus.
    Richard-Parpaillon L; Cosgrove RA; Devine C; Vernon AE; Philpott A
    Development; 2004 Jun; 131(11):2577-86. PubMed ID: 15115752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transdifferentiation of ocular tissues in larval Xenopus laevis.
    Bosco L
    Differentiation; 1988 Nov; 39(1):4-15. PubMed ID: 3073094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction.
    Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A
    Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model.
    Miyake A; Araki M
    Dev Neurobiol; 2014 Jul; 74(7):739-56. PubMed ID: 24488715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular polarity in cultured animal pole cells of Xenopus embryos.
    Asada-Kubota M
    J Ultrastruct Mol Struct Res; 1989 Dec; 102(3):265-75. PubMed ID: 2634710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monoclonal antibody specific for an epidermal cell antigen of Xenopus laevis: electron microscopic observations using a gold-labeling method.
    Asada-Kubota M
    J Histochem Cytochem; 1988 May; 36(5):515-21. PubMed ID: 3356895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.