These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33621735)
1. Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Baskaran SM; Zakaria MR; Mukhlis Ahmad Sabri AS; Mohamed MS; Wasoh H; Toshinari M; Hassan MA; Banat IM Environ Pollut; 2021 May; 276():116742. PubMed ID: 33621735 [TBL] [Abstract][Full Text] [Related]
2. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
3. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Sharma S; Datta P; Kumar B; Tiwari P; Pandey LM Biodegradation; 2019 Aug; 30(4):301-312. PubMed ID: 30937572 [TBL] [Abstract][Full Text] [Related]
4. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
5. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids. Zhao F; Wu Y; Wang Q; Zheng M; Cui Q Microb Cell Fact; 2021 Sep; 20(1):185. PubMed ID: 34556134 [TBL] [Abstract][Full Text] [Related]
6. High Di-rhamnolipid Production Using Zhou J; Xue R; Liu S; Xu N; Xin F; Zhang W; Jiang M; Dong W Front Bioeng Biotechnol; 2019; 7():245. PubMed ID: 31696112 [TBL] [Abstract][Full Text] [Related]
7. Recycling of cooking oil fume condensate for the production of rhamnolipids by Pseudomonas aeruginosa WB505. Wu J; Zhang J; Zhang H; Gao M; Liu L; Zhan X Bioprocess Biosyst Eng; 2019 May; 42(5):777-784. PubMed ID: 30741355 [TBL] [Abstract][Full Text] [Related]
8. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Saikia RR; Deka S; Deka M; Sarma H J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225 [TBL] [Abstract][Full Text] [Related]
9. Bio-cleaning Efficiency of Rhamnolipids Produced from Native Pseudomonas aeruginosa Grown on Agro-industrial By-products for Liquid Detergent Formulation. Ibrahim S; Diab A; Abdulla H Appl Biochem Biotechnol; 2021 Aug; 193(8):2616-2633. PubMed ID: 33826066 [TBL] [Abstract][Full Text] [Related]
10. Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate. Nicolò MS; Cambria MG; Impallomeni G; Rizzo MG; Pellicorio C; Ballistreri A; Guglielmino SPP N Biotechnol; 2017 Oct; 39(Pt A):36-41. PubMed ID: 28587884 [TBL] [Abstract][Full Text] [Related]
11. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Silva SN; Farias CB; Rufino RD; Luna JM; Sarubbo LA Colloids Surf B Biointerfaces; 2010 Aug; 79(1):174-83. PubMed ID: 20417068 [TBL] [Abstract][Full Text] [Related]
12. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications. Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Samadi N; Abadian N; Ahmadkhaniha R; Amini F; Dalili D; Rastkari N; Safaripour E; Mohseni FA Folia Microbiol (Praha); 2012 Nov; 57(6):501-8. PubMed ID: 22644668 [TBL] [Abstract][Full Text] [Related]
14. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa. Eraqi WA; Yassin AS; Ali AE; Amin MA Biotechnol Res Int; 2016; 2016():3464509. PubMed ID: 26942014 [TBL] [Abstract][Full Text] [Related]
15. Maximize rhamnolipid production with low foaming and high yield. Sodagari M; Invally K; Ju LK Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859 [TBL] [Abstract][Full Text] [Related]
16. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Sanjivkumar M; Deivakumari M; Immanuel G Arch Microbiol; 2021 Jul; 203(5):2297-2314. PubMed ID: 33646338 [TBL] [Abstract][Full Text] [Related]
17. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462 [TBL] [Abstract][Full Text] [Related]
18. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
19. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Correia J; Gudiña EJ; Lazar Z; Janek T; Teixeira JA Appl Microbiol Biotechnol; 2022 Nov; 106(22):7477-7489. PubMed ID: 36222896 [TBL] [Abstract][Full Text] [Related]
20. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA AMB Express; 2020 Nov; 10(1):201. PubMed ID: 33146788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]