These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33621735)

  • 21. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications.
    Zhao F; Zheng M; Xu X
    Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
    Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry.
    Zhao F; Yuan M; Lei L; Li C; Xu X
    Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R.
    Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S
    Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Costa SG; Lépine F; Milot S; Déziel E; Nitschke M; Contiero J
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1063-72. PubMed ID: 19471980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1.
    Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM
    Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon.
    Sun H; Wang L; Nie H; Diwu Z; Nie M; Zhang B
    Biotechnol Prog; 2021 Jul; 37(4):e3155. PubMed ID: 33871921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of Waste Cooking Oil to Rhamnolipid by a Newly Oleophylic
    Shi S; Teng Z; Liu J; Li T
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhamnolipids functionalized with basic amino acids: Synthesis, aggregation behavior, antibacterial activity and biodegradation studies.
    Ramos da Silva A; Manresa MÁ; Pinazo A; García MT; Pérez L
    Colloids Surf B Biointerfaces; 2019 Sep; 181():234-243. PubMed ID: 31151036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioprospecting of rhamnolipids production and optimization by an oil-degrading Pseudomonas sp. S2WE isolated from freshwater lake.
    Phulpoto IA; Wang Y; Qazi MA; Hu B; Ndayisenga F; Yu Z
    Bioresour Technol; 2021 Mar; 323():124601. PubMed ID: 33385627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.
    Radzuan MN; Banat IM; Winterburn J
    Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source.
    Moya Ramírez I; Tsaousi K; Rudden M; Marchant R; Jurado Alameda E; García Román M; Banat IM
    Bioresour Technol; 2015 Dec; 198():231-6. PubMed ID: 26398666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG
    Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative studies on the structural composition, surface/interface activity and application potential of rhamnolipids produced by Pseudomonas aeruginosa using hydrophobic or hydrophilic substrates.
    Zhao F; Han S; Zhang Y
    Bioresour Technol; 2020 Jan; 295():122269. PubMed ID: 31669868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.
    Leite GG; Figueirôa JV; Almeida TC; Valões JL; Marques WF; Duarte MD; Gorlach-Lira K
    Biotechnol Prog; 2016 Mar; 32(2):262-70. PubMed ID: 26588432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent.
    Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B
    Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential application of biosurfactant produced by Pseudomonas aeruginosa TGC01 using crude glycerol on the enzymatic hydrolysis of lignocellulosic material.
    Bezerra KGO; Gomes UVR; Silva RO; Sarubbo LA; Ribeiro E
    Biodegradation; 2019 Aug; 30(4):351-361. PubMed ID: 31250272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.