BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33621870)

  • 1. Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light.
    Xiong S; Cao X; Fang H; Guo H; Xing B
    Sci Total Environ; 2021 Jun; 775():145867. PubMed ID: 33621870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris.
    Zheng S; Zhou Q; Chen C; Yang F; Cai Z; Li D; Geng Q; Feng Y; Wang H
    Sci Total Environ; 2019 Apr; 660():1182-1190. PubMed ID: 30743913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS).
    Zhang X; Yang CW; Yu HQ; Sheng GP
    Water Res; 2016 Dec; 106():242-248. PubMed ID: 27728818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa.
    Kumari R; Barsainya M; Singh DP
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4645-4654. PubMed ID: 27966085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria.
    Li SW; Zhang X; Sheng GP
    Environ Sci Pollut Res Int; 2016 May; 23(9):8627-33. PubMed ID: 26797954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mechanistic View of the Light-Induced Synthesis of Silver Nanoparticles Using Extracellular Polymeric Substances of
    Rahman A; Kumar S; Bafana A; Lin J; Dahoumane SA; Jeffryes C
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-defense mechanisms of microorganisms from the antimicrobial effect of silver nanoparticles: Highlight the role of extracellular polymeric substances.
    Yang Y; Chen X; Zhang N; Sun B; Wang K; Zhang Y; Zhu L
    Water Res; 2022 Jun; 218():118452. PubMed ID: 35447420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights into the multistep chlorination of silver nanoparticles in aquatic environments.
    Yang Y; Zhang N; You Q; Chen X; Zhang Y; Zhu L
    Water Res; 2023 Jul; 240():120111. PubMed ID: 37263118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.
    Kang F; Alvarez PJ; Zhu D
    Environ Sci Technol; 2014; 48(1):316-22. PubMed ID: 24328348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.
    Levard C; Mitra S; Yang T; Jew AD; Badireddy AR; Lowry GV; Brown GE
    Environ Sci Technol; 2013 Jun; 47(11):5738-45. PubMed ID: 23641814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.
    Zhou K; Hu Y; Zhang L; Yang K; Lin D
    Sci Rep; 2016 Sep; 6():32998. PubMed ID: 27615743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simvastatin decreases the silver resistance of E. faecalis through compromising the entrapping function of extracellular polymeric substances against silver.
    Cui J; Duan M; Sun Q; Fan W
    World J Microbiol Biotechnol; 2020 Mar; 36(4):54. PubMed ID: 32172435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Chloride Ions on Dissolution, ROS Generation, and Toxicity of Silver Nanoparticles under UV Irradiation.
    Li Y; Zhao J; Shang E; Xia X; Niu J; Crittenden J
    Environ Sci Technol; 2018 Apr; 52(8):4842-4849. PubMed ID: 29260863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Silver-Chloride Complexations in Sunlight-Driven Formation of Silver Nanoparticles.
    Singh A; Hou WC; Lin TF; Zepp RG
    Environ Sci Technol; 2019 Oct; 53(19):11162-11169. PubMed ID: 31479236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa.
    Zhang J; Zhou F; Liu Y; Huang F; Zhang C
    Sci Total Environ; 2020 Feb; 704():135368. PubMed ID: 31831249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer in peptides: on the formation of silver nanoparticles.
    Kracht S; Messerer M; Lang M; Eckhardt S; Lauz M; Grobéty B; Fromm KM; Giese B
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):2912-6. PubMed ID: 25663127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure.
    Zakaria BS; Dhar BR
    Sci Total Environ; 2020 Sep; 734():139395. PubMed ID: 32454336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pyrene on formation of natural silver nanoparticles via reduction of silver ions by humic acid under UV irradiation.
    Liu M; Gao X; Pan F; Deng Y; Xia D; Li Z; Fu J
    Chemosphere; 2020 May; 247():125937. PubMed ID: 31978665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation.
    Zou X; Shi J; Zhang H
    J Hazard Mater; 2015 Jul; 292():61-9. PubMed ID: 25795274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.