These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33621929)

  • 1. Comparison of mesophilic and thermophilic dark fermentation with nickel ferrite nanoparticles supplementation for biohydrogen production.
    Zhang J; Zhao W; Yang J; Li Z; Zhang J; Zang L
    Bioresour Technol; 2021 Jun; 329():124853. PubMed ID: 33621929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved biohydrogen evolution through calcium ferrite nanoparticles assisted dark fermentation.
    Zhang J; Zhang H; Zhang J; Zhou C; Pei Y; Zang L
    Bioresour Technol; 2022 Oct; 361():127676. PubMed ID: 35872267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of calcium magnesium ferrite nanoparticles for boosting biohydrogen production.
    Wang R; Zhang H; Zhang J; Zhou C; Zhang X; Yan X; Yu F; Zhang J
    Bioresour Technol; 2024 Mar; 395():130410. PubMed ID: 38307484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production.
    Li W; Zhang J; Yang J; Zhang J; Li Z; Yang Y; Zang L
    Bioresour Technol; 2022 Jan; 343():126078. PubMed ID: 34606925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the mechanism of increased synthesis of hydrogen from an anaerobic fermentation by zinc ferrate nanoparticles: Mesophilic and thermophilic situations comparison.
    Zhang Y; Zhao W; Li S; Zhang X; Wang S
    Bioresour Technol; 2023 Nov; 387():129617. PubMed ID: 37573974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the mechanisms of alkali-based magnetic nanosheets enhanced hydrogen production from dark fermentation: Comparison between mesophilic and thermophilic conditions.
    Cao X; Zhao L; Dong W; Mo H; Ba T; Li T; Guan D; Zhao W; Wang N; Ma Z; Zang L
    Bioresour Technol; 2022 Jan; 343():126141. PubMed ID: 34655780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles.
    Yang G; Wang J
    Bioresour Technol; 2018 Oct; 266():413-420. PubMed ID: 29982065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-fermentation of residual algal biomass and glucose under the influence of Fe
    Srivastava N; Srivastava M; Singh R; Syed A; Bahadur Pal D; Elgorban AM; Kushwaha D; Mishra PK; Gupta VK
    Bioresour Technol; 2021 Dec; 342():126034. PubMed ID: 34592453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the roles of lanthanum-iron oxide nanoparticles in biohydrogen production.
    Yang J; Zhang H; Liu H; Zhang J; Pei Y; Zang L
    Bioresour Technol; 2022 May; 351():127027. PubMed ID: 35314310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel-Cobalt Oxide Nanoparticle-Induced Biohydrogen Production.
    Li Z; Wang J; Tian K; Zhou C; Pei Y; Zhang J; Zang L
    ACS Omega; 2022 Nov; 7(45):41594-41605. PubMed ID: 36406540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach.
    Mullai P; Yogeswari MK; Sridevi K
    Bioresour Technol; 2013 Aug; 141():212-9. PubMed ID: 23582220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of nanoparticles to increase biological hydrogen production: the difference in metabolic pathways in batch and continuous reactors.
    Moura AGL; Rabelo CABS; Silva EL; Varesche MBA
    Environ Technol; 2024 Jun; 45(15):3095-3103. PubMed ID: 37129278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced biohydrogen production from macroalgae by zero-valent iron nanoparticles: Insights into microbial and metabolites distribution.
    Yin Y; Wang J
    Bioresour Technol; 2019 Jun; 282():110-117. PubMed ID: 30852330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic nitrogen-doped activated carbon improved biohydrogen production.
    Tian K; Zhang J; Zhou C; Yang M; Zhang X; Yan X; Zang L
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):87215-87227. PubMed ID: 37420156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggering photo fermentative biohydrogen production through NiFe
    Liu S; Shen F; Nadeem F; Ur Rahman M; Usman M; Ramzan H; Shahzaib M; Singhania RR; Yi W; Qing C; Tahir N
    Bioresour Technol; 2023 Oct; 385():129378. PubMed ID: 37352989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment.
    Brindha K; Mohanraj S; Rajaguru P; Pugalenthi V
    Sci Total Environ; 2023 Feb; 859(Pt 1):160002. PubMed ID: 36356773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biohydrogen production with low graphene oxide content using thermophilic bioreactors.
    Vemuri B; Handa V; Jawaharraj K; Sani R; Gadhamshetty V
    Bioresour Technol; 2022 Feb; 346():126574. PubMed ID: 34923081
    [TBL] [Abstract][Full Text] [