These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33622035)

  • 1. Tunable Graphene Phononic Crystal.
    Kirchhof JN; Weinel K; Heeg S; Deinhart V; Kovalchuk S; Höflich K; Bolotin KI
    Nano Lett; 2021 Mar; 21(5):2174-2182. PubMed ID: 33622035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-Based Nanoelectromechanical Periodic Array with Tunable Frequency.
    Zhang QH; Ying Y; Zhang ZZ; Su ZJ; Ma H; Qin GQ; Song XX; Guo GP
    Nano Lett; 2021 Oct; 21(20):8571-8578. PubMed ID: 34613727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Graphene Phononic Crystals for Heat Phonon Engineering.
    Masrura HM; Kareekunnan A; Liu F; Ramaraj SG; Ellrott G; Hammam AMM; Muruganathan M; Mizuta H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32630087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal.
    Shakeri A; Darbari S; Moravvej-Farshi MK
    Ultrasonics; 2019 Feb; 92():8-12. PubMed ID: 30216782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies.
    Cha J; Daraio C
    Nat Nanotechnol; 2018 Nov; 13(11):1016-1020. PubMed ID: 30201989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring regenerative coupling in phononic crystals for room temperature quantum optomechanics.
    Weituschat LM; Castro I; Colomar I; Everly C; Postigo PA; Ramos D
    Sci Rep; 2024 May; 14(1):12330. PubMed ID: 38811848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on bandgaps in two-dimensional phononic crystal with two resonators.
    Gao N; Wu JH; Yu L
    Ultrasonics; 2015 Feb; 56():287-93. PubMed ID: 25216625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anchor Loss Reduction of Lamb Wave Resonator by Pillar-Based Phononic Crystal.
    Tong Y; Han T
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33430263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spider Web-Like Phononic Crystals for Piezoelectric MEMS Resonators to Reduce Acoustic Energy Dissipation.
    Bao FH; Wu XQ; Zhou X; Wu QD; Zhang XS; Bao JF
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31546943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.
    Ash BJ; Worsfold SR; Vukusic P; Nash GR
    Nat Commun; 2017 Aug; 8(1):174. PubMed ID: 28765535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain.
    Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ
    Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics.
    Tsaturyan Y; Barg A; Simonsen A; Villanueva LG; Schmid S; Schliesser A; Polzik ES
    Opt Express; 2014 Mar; 22(6):6810-21. PubMed ID: 24664029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Hypersonic Bandgap Formation in Anisotropic Crystals of Dumbbell Nanoparticles.
    Kim H; Gueddida A; Wang Z; Djafari-Rouhani B; Fytas G; Furst EM
    ACS Nano; 2023 Oct; 17(19):19224-19231. PubMed ID: 37756140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Optimization of Graphene Triangular Lattice Phononic Crystal Based on Dissipation Dilution Theory.
    Zheng X; Liu Y; Qiu J; Liu G
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Fabrication of Phononic Crystal Soft-Supported Graphene Resonator.
    Zheng X; Liu Y; Zhen J; Qiu J; Liu G
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation and tuning of hypersonic bandgaps in colloidal crystals.
    Cheng W; Wang J; Jonas U; Fytas G; Stefanou N
    Nat Mater; 2006 Oct; 5(10):830-6. PubMed ID: 16951677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges.
    Takamura M; Okamoto H; Furukawa K; Yamaguchi H; Hibino H
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon waveguides for electromechanical circuits.
    Hatanaka D; Mahboob I; Onomitsu K; Yamaguchi H
    Nat Nanotechnol; 2014 Jul; 9(7):520-4. PubMed ID: 24929340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator.
    Singh R; Sarkar A; Guria C; Nicholl RJT; Chakraborty S; Bolotin KI; Ghosh S
    Nano Lett; 2020 Jun; 20(6):4659-4666. PubMed ID: 32437616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide Acoustic Bandgap Solid Disk-Shaped Phononic Crystal Anchoring Boundaries for Enhancing Quality Factor in AlN-on-Si MEMS Resonators.
    Siddiqi MWU; Lee JE
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.