These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 33622181)
1. Kinetic and kinematic synchronization between blind and guide sprinters. Nagahara R J Sports Sci; 2021 Jul; 39(14):1661-1668. PubMed ID: 33622181 [TBL] [Abstract][Full Text] [Related]
2. Alterations of spatiotemporal and ground reaction force variables during decelerated sprinting. Nagahara R; Girard O Scand J Med Sci Sports; 2021 Mar; 31(3):586-596. PubMed ID: 33217086 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and kinematic determinants of female sprint performance. Gleadhill S; Nagahara R J Sports Sci; 2021 Mar; 39(6):609-617. PubMed ID: 33143572 [TBL] [Abstract][Full Text] [Related]
4. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint. Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906 [TBL] [Abstract][Full Text] [Related]
5. Normative spatiotemporal and ground reaction force data for female and male sprinting. Nagahara R J Sports Sci; 2023 Jun; 41(12):1240-1249. PubMed ID: 37805986 [TBL] [Abstract][Full Text] [Related]
6. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105 [TBL] [Abstract][Full Text] [Related]
7. Asymmetries of kinematics and kinetics in female and male sprinting. Nagahara R; Gleadhill S J Sports Med Phys Fitness; 2023 Aug; 63(8):891-898. PubMed ID: 37166253 [TBL] [Abstract][Full Text] [Related]
8. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Rabita G; Dorel S; Slawinski J; Sàez-de-Villarreal E; Couturier A; Samozino P; Morin JB Scand J Med Sci Sports; 2015 Oct; 25(5):583-94. PubMed ID: 25640466 [TBL] [Abstract][Full Text] [Related]
9. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running. Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539 [TBL] [Abstract][Full Text] [Related]
10. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration. Wild JJ; Bezodis IN; North JS; Bezodis NE Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724 [TBL] [Abstract][Full Text] [Related]
11. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces. Colyer SL; Nagahara R; Takai Y; Salo AIT Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037 [TBL] [Abstract][Full Text] [Related]
12. Differences in Strength, Speed, and Power Performance Between Visually Impaired Paralympic and Olympic Sprinters. Freitas TT; Alcaraz PE; Winckler C; Zabaloy S; Pereira LA; Loturco I Int J Sports Physiol Perform; 2022 May; 17(5):787-790. PubMed ID: 35045395 [TBL] [Abstract][Full Text] [Related]
13. Acceleration capability in elite sprinters and ground impulse: Push more, brake less? Morin JB; Slawinski J; Dorel S; de Villareal ES; Couturier A; Samozino P; Brughelli M; Rabita G J Biomech; 2015 Sep; 48(12):3149-54. PubMed ID: 26209876 [TBL] [Abstract][Full Text] [Related]
14. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters. Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121 [TBL] [Abstract][Full Text] [Related]
15. Phase analysis in maximal sprinting: an investigation of step-to-step technical changes between the initial acceleration, transition and maximal velocity phases. von Lieres Und Wilkau HC; Irwin G; Bezodis NE; Simpson S; Bezodis IN Sports Biomech; 2020 Apr; 19(2):141-156. PubMed ID: 29972337 [TBL] [Abstract][Full Text] [Related]
16. Ground reaction force across the transition during sprint acceleration. Nagahara R; Kanehisa H; Fukunaga T Scand J Med Sci Sports; 2020 Mar; 30(3):450-461. PubMed ID: 31705835 [TBL] [Abstract][Full Text] [Related]
17. Are peak ground reaction forces related to better sprint acceleration performance? Nagahara R; Kanehisa H; Matsuo A; Fukunaga T Sports Biomech; 2021 Apr; 20(3):360-369. PubMed ID: 30676878 [TBL] [Abstract][Full Text] [Related]
18. Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters. Loturco I; DʼAngelo RA; Fernandes V; Gil S; Kobal R; Cal Abad CC; Kitamura K; Nakamura FY J Strength Cond Res; 2015 Mar; 29(3):758-64. PubMed ID: 25162648 [TBL] [Abstract][Full Text] [Related]
19. The importance of duration and magnitude of force application to sprint performance during the initial acceleration, transition and maximal velocity phases. von Lieres Und Wilkau HC; Bezodis NE; Morin JB; Irwin G; Simpson S; Bezodis IN J Sports Sci; 2020 Oct; 38(20):2359-2366. PubMed ID: 32627681 [TBL] [Abstract][Full Text] [Related]
20. First and Second Step Characteristics of Amputee and Able-Bodied Sprinters. Strutzenberger G; Brazil A; Exell T; von Lieres Und Wilkau H; Davies JD; Willwacher S; Funken J; Müller R; Heinrich K; Schwameder H; Potthast W; Irwin G Int J Sports Physiol Perform; 2018 Aug; 13(7):874-881. PubMed ID: 29252086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]