These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1053 related articles for article (PubMed ID: 33622224)
1. SARS-CoV-2 Proteins: Are They Useful as Targets for COVID-19 Drugs and Vaccines? Mohammed MEA Curr Mol Med; 2022; 22(1):50-66. PubMed ID: 33622224 [TBL] [Abstract][Full Text] [Related]
2. High-Resolution Linear Epitope Mapping of the Receptor Binding Domain of SARS-CoV-2 Spike Protein in COVID-19 mRNA Vaccine Recipients. Nitahara Y; Nakagama Y; Kaku N; Candray K; Michimuko Y; Tshibangu-Kabamba E; Kaneko A; Yamamoto H; Mizobata Y; Kakeya H; Yasugi M; Kido Y Microbiol Spectr; 2021 Dec; 9(3):e0096521. PubMed ID: 34756082 [TBL] [Abstract][Full Text] [Related]
3. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Yadav R; Chaudhary JK; Jain N; Chaudhary PK; Khanra S; Dhamija P; Sharma A; Kumar A; Handu S Cells; 2021 Apr; 10(4):. PubMed ID: 33917481 [TBL] [Abstract][Full Text] [Related]
4. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Wang P; Nair MS; Liu L; Iketani S; Luo Y; Guo Y; Wang M; Yu J; Zhang B; Kwong PD; Graham BS; Mascola JR; Chang JY; Yin MT; Sobieszczyk M; Kyratsous CA; Shapiro L; Sheng Z; Huang Y; Ho DD Nature; 2021 May; 593(7857):130-135. PubMed ID: 33684923 [TBL] [Abstract][Full Text] [Related]
5. Antibody landscape against SARS-CoV-2 reveals significant differences between non-structural/accessory and structural proteins. Li Y; Xu Z; Lei Q; Lai DY; Hou H; Jiang HW; Zheng YX; Wang XN; Wu J; Ma ML; Zhang B; Chen H; Yu C; Xue JB; Zhang HN; Qi H; Guo SJ; Zhang Y; Lin X; Yao Z; Sheng H; Sun Z; Wang F; Fan X; Tao SC Cell Rep; 2021 Jul; 36(2):109391. PubMed ID: 34242574 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Binding Site of Remdesivir and Its Metabolites with NSP12-NSP7-NSP8, and NSP3 of SARS CoV-2 Virus and Alternative Potential Drugs for COVID-19 Treatment. Jung LS; Gund TM; Narayan M Protein J; 2020 Dec; 39(6):619-630. PubMed ID: 33185784 [TBL] [Abstract][Full Text] [Related]
7. In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19. Can H; Köseoğlu AE; Erkunt Alak S; Güvendi M; Döşkaya M; Karakavuk M; Gürüz AY; Ün C Sci Rep; 2020 Dec; 10(1):22387. PubMed ID: 33372181 [TBL] [Abstract][Full Text] [Related]
8. Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. Silvas JA; Vasquez DM; Park JG; Chiem K; Allué-Guardia A; Garcia-Vilanova A; Platt RN; Miorin L; Kehrer T; Cupic A; Gonzalez-Reiche AS; Bakel HV; García-Sastre A; Anderson T; Torrelles JB; Ye C; Martinez-Sobrido L J Virol; 2021 Aug; 95(17):e0040221. PubMed ID: 34133899 [TBL] [Abstract][Full Text] [Related]
9. Understanding Individual SARS-CoV-2 Proteins for Targeted Drug Development against COVID-19. van de Leemput J; Han Z Mol Cell Biol; 2021 Aug; 41(9):e0018521. PubMed ID: 34124934 [TBL] [Abstract][Full Text] [Related]
10. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Yang T; Wang SC; Ye L; Maimaitiyiming Y; Naranmandura H Expert Opin Drug Discov; 2023 Mar; 18(3):247-268. PubMed ID: 36723288 [TBL] [Abstract][Full Text] [Related]
11. Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain. Yang M; Li J; Huang Z; Li H; Wang Y; Wang X; Kang S; Huang X; Wu C; Liu T; Jia Z; Liang J; Yuan X; He S; Chen X; Zhou Z; Chen Q; Liu S; Li J; Zheng H; Liu X; Li K; Yao X; Lang B; Liu L; Liao HX; Chen S Microbiol Spectr; 2021 Oct; 9(2):e0135221. PubMed ID: 34643438 [TBL] [Abstract][Full Text] [Related]
12. SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Redondo N; Zaldívar-López S; Garrido JJ; Montoya M Front Immunol; 2021; 12():708264. PubMed ID: 34305949 [TBL] [Abstract][Full Text] [Related]
13. The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Bai Z; Cao Y; Liu W; Li J Viruses; 2021 Jun; 13(6):. PubMed ID: 34200602 [TBL] [Abstract][Full Text] [Related]
14. The percentages of SARS-CoV-2 protein similarity and identity with SARS-CoV and BatCoV RaTG13 proteins can be used as indicators of virus origin. Mohammed MEA J Proteins Proteom; 2021; 12(2):81-91. PubMed ID: 33850392 [TBL] [Abstract][Full Text] [Related]
16. The role of SARS-CoV-2 accessory proteins in immune evasion. Zandi M; Shafaati M; Kalantar-Neyestanaki D; Pourghadamyari H; Fani M; Soltani S; Kaleji H; Abbasi S Biomed Pharmacother; 2022 Dec; 156():113889. PubMed ID: 36265309 [TBL] [Abstract][Full Text] [Related]
18. A review of monoclonal antibodies in COVID-19: Role in immunotherapy, vaccine development and viral detection. Tabll AA; Shahein YE; Omran MM; Elnakib MM; Ragheb AA; Amer KE Hum Antibodies; 2021; 29(3):179-191. PubMed ID: 33998533 [TBL] [Abstract][Full Text] [Related]
19. Involvement of SARS-CoV-2 accessory proteins in immunopathogenesis. Ito H; Tamura T; Wang L; Mori K; Tsuda M; Suzuki R; Suzuki S; Yoshimatsu K; Tanaka S; Fukuhara T Microbiol Immunol; 2024 Jul; 68(7):237-247. PubMed ID: 38837257 [TBL] [Abstract][Full Text] [Related]
20. Quantitative Mutation Analysis of Genes and Proteins of Major SARS-CoV-2 Variants of Concern and Interest. Liang F Viruses; 2023 May; 15(5):. PubMed ID: 37243278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]