These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 33622246)
1. Transcriptomics analysis of Toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. Menard KL; Bu L; Denkers EY BMC Genomics; 2021 Feb; 22(1):130. PubMed ID: 33622246 [TBL] [Abstract][Full Text] [Related]
2. Toxoplasma gondii Manipulates Expression of Host Long Noncoding RNA during Intracellular Infection. Menard KL; Haskins BE; Colombo AP; Denkers EY Sci Rep; 2018 Oct; 8(1):15017. PubMed ID: 30301916 [TBL] [Abstract][Full Text] [Related]
3. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. Mercer HL; Snyder LM; Doherty CM; Fox BA; Bzik DJ; Denkers EY PLoS Pathog; 2020 May; 16(5):e1008572. PubMed ID: 32413093 [TBL] [Abstract][Full Text] [Related]
4. Toxoplasma gondii genotype determines MyD88-dependent signaling in infected macrophages. Kim L; Butcher BA; Lee CW; Uematsu S; Akira S; Denkers EY J Immunol; 2006 Aug; 177(4):2584-91. PubMed ID: 16888020 [TBL] [Abstract][Full Text] [Related]
5. TLR adaptor MyD88 is essential for pathogen control during oral toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite. Sukhumavasi W; Egan CE; Warren AL; Taylor GA; Fox BA; Bzik DJ; Denkers EY J Immunol; 2008 Sep; 181(5):3464-73. PubMed ID: 18714019 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of mRNA-lncRNA co-expression profiles in mouse brain during infection with Toxoplasma gondii. Guo XD; Zhou CX; Li LY; Ai K; Wang YL; Zhou DH Acta Trop; 2023 Jan; 237():106722. PubMed ID: 36252729 [TBL] [Abstract][Full Text] [Related]
7. Temporal transcriptomic changes in long non-coding RNAs and messenger RNAs involved in the host immune and metabolic response during Toxoplasma gondii lytic cycle. Wang SS; Zhou CX; Elsheikha HM; He JJ; Zou FC; Zheng WB; Zhu XQ; Zhao GH Parasit Vectors; 2022 Jan; 15(1):22. PubMed ID: 35012632 [TBL] [Abstract][Full Text] [Related]
8. Effects of Toxoplasma gondii genotype and absence of host MAL/Myd88 on the temporal regulation of gene expression in infected microglial cells. Glaser KC; Hagos B; Molestina RE Exp Parasitol; 2011 Dec; 129(4):409-13. PubMed ID: 21924265 [TBL] [Abstract][Full Text] [Related]
9. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. Pittman KJ; Aliota MT; Knoll LJ BMC Genomics; 2014 Sep; 15(1):806. PubMed ID: 25240600 [TBL] [Abstract][Full Text] [Related]
10. Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination. Jensen KD; Camejo A; Melo MB; Cordeiro C; Julien L; Grotenbreg GM; Frickel EM; Ploegh HL; Young L; Saeij JP mBio; 2015 Feb; 6(2):e02280. PubMed ID: 25714710 [TBL] [Abstract][Full Text] [Related]
11. Microarray analysis of long non-coding RNA expression profiles uncovers a Toxoplasma-induced negative regulation of host immune signaling. Liu W; Huang L; Wei Q; Zhang Y; Zhang S; Zhang W; Cai L; Liang S Parasit Vectors; 2018 Mar; 11(1):174. PubMed ID: 29530077 [TBL] [Abstract][Full Text] [Related]
12. Expression profile of microRNAs in porcine alveolar macrophages after Toxoplasma gondii infection. Li S; Yang J; Wang L; Du F; Zhao J; Fang R Parasit Vectors; 2019 Jan; 12(1):65. PubMed ID: 30696482 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide comparative analysis revealed significant transcriptome changes in mice after Toxoplasma gondii infection. Jia B; Lu H; Liu Q; Yin J; Jiang N; Chen Q Parasit Vectors; 2013 Jun; 6():161. PubMed ID: 23734932 [TBL] [Abstract][Full Text] [Related]
14. The Toxoplasma gondii Rhoptry Kinome Is Essential for Chronic Infection. Fox BA; Rommereim LM; Guevara RB; Falla A; Hortua Triana MA; Sun Y; Bzik DJ mBio; 2016 May; 7(3):. PubMed ID: 27165797 [TBL] [Abstract][Full Text] [Related]
16. MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection. Torres M; Guiton R; Lacroix-Lamandé S; Ryffel B; Leman S; Dimier-Poisson I J Neuroinflammation; 2013 Feb; 10():19. PubMed ID: 23374751 [TBL] [Abstract][Full Text] [Related]
17. Toxoplasma gondii infection regulates apoptosis of host cells via miR-185/ARAF axis. Su D; Zhu S; Hou Z; Hao F; Xu K; Xu F; Zhu Y; Liu D; Xu J; Tao J Parasit Vectors; 2023 Oct; 16(1):371. PubMed ID: 37858158 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic profiling of long non-coding RNAs and messenger RNAs in the liver of mice during Toxoplasma gondii infection. Zou Y; Yang X; Chen C; Ma H; Cao HW; Jiang J; Wei XY; Zhang XX Parasit Vectors; 2024 Jan; 17(1):20. PubMed ID: 38229193 [TBL] [Abstract][Full Text] [Related]
19. Cluster analysis of splenocyte microRNAs in the pig reveals key signal regulators of immunomodulation in the host during acute and chronic Toxoplasma gondii infection. Hou Z; Zhang H; Xu K; Zhu S; Wang L; Su D; Liu J; Su S; Liu D; Huang S; Xu J; Pan Z; Tao J Parasit Vectors; 2022 Feb; 15(1):58. PubMed ID: 35177094 [TBL] [Abstract][Full Text] [Related]
20. Impact of Menard KL; Haskins BE; Denkers EY Front Cell Infect Microbiol; 2019; 9():132. PubMed ID: 31157172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]