These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
633 related articles for article (PubMed ID: 33622781)
1. Reduction of Glut1 in the Neural Retina But Not the RPE Alleviates Polyol Accumulation and Normalizes Early Characteristics of Diabetic Retinopathy. Holoman NC; Aiello JJ; Trobenter TD; Tarchick MJ; Kozlowski MR; Makowski ER; De Vivo DC; Singh C; Sears JE; Samuels IS J Neurosci; 2021 Apr; 41(14):3275-3299. PubMed ID: 33622781 [TBL] [Abstract][Full Text] [Related]
2. Systemic Reduction of Glut1 Normalizes Retinal Dysfunction, Inflammation, and Oxidative Stress in the Retina of Spontaneous Type 2 Diabetic Mice. Aiello JJ; Bogart MC; Chan WT; Holoman NC; Trobenter TD; Relf CE; Kleinman DM; De Vivo DC; Samuels IS Am J Pathol; 2023 Jul; 193(7):927-938. PubMed ID: 37062410 [TBL] [Abstract][Full Text] [Related]
3. GLUT1 activity contributes to the impairment of PEDF secretion by the RPE. Calado SM; Alves LS; Simão S; Silva GA Mol Vis; 2016; 22():761-70. PubMed ID: 27440994 [TBL] [Abstract][Full Text] [Related]
4. Endogenous insulin signaling in the RPE contributes to the maintenance of rod photoreceptor function in diabetes. Tarchick MJ; Cutler AH; Trobenter TD; Kozlowski MR; Makowski ER; Holoman N; Shao J; Shen B; Anand-Apte B; Samuels IS Exp Eye Res; 2019 Mar; 180():63-74. PubMed ID: 30543793 [TBL] [Abstract][Full Text] [Related]
5. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease. Samuels IS; Lee CA; Petrash JM; Peachey NS; Kern TS Vis Neurosci; 2012 Nov; 29(6):267-74. PubMed ID: 23101909 [TBL] [Abstract][Full Text] [Related]
6. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response. Liao YR; Li ZJ; Zeng P; Lan YQ Biochem Biophys Res Commun; 2017 Nov; 493(2):1136-1142. PubMed ID: 28843858 [TBL] [Abstract][Full Text] [Related]
7. Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Müller glial cells. Swarup A; Samuels IS; Bell BA; Han JYS; Du J; Massenzio E; Abel ED; Boesze-Battaglia K; Peachey NS; Philp NJ Am J Physiol Cell Physiol; 2019 Jan; 316(1):C121-C133. PubMed ID: 30462537 [TBL] [Abstract][Full Text] [Related]
8. Mesenchymal stem cells-derived exosomes alleviate senescence of retinal pigment epithelial cells by activating PI3K/AKT-Nrf2 signaling pathway in early diabetic retinopathy. Bai L; Wang Y Exp Cell Res; 2024 Aug; 441(2):114170. PubMed ID: 39019426 [TBL] [Abstract][Full Text] [Related]
10. Polyphenol-Rich Extract of Peng J; Abdulla R; Liu X; He F; Xin X; Aisa HA Nutrients; 2024 Sep; 16(17):. PubMed ID: 39275261 [TBL] [Abstract][Full Text] [Related]
11. Novel transgenic mouse models develop retinal changes associated with early diabetic retinopathy similar to those observed in rats with diabetes mellitus. Guo C; Zhang Z; Zhang P; Makita J; Kawada H; Blessing K; Kador PF Exp Eye Res; 2014 Feb; 119():77-87. PubMed ID: 24370601 [TBL] [Abstract][Full Text] [Related]
12. Chrysin Ameliorates Malfunction of Retinoid Visual Cycle through Blocking Activation of AGE-RAGE-ER Stress in Glucose-Stimulated Retinal Pigment Epithelial Cells and Diabetic Eyes. Kang MK; Lee EJ; Kim YH; Kim DY; Oh H; Kim SI; Kang YH Nutrients; 2018 Aug; 10(8):. PubMed ID: 30096827 [TBL] [Abstract][Full Text] [Related]
13. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. Samuels IS; Bell BA; Pereira A; Saxon J; Peachey NS J Neurophysiol; 2015 Feb; 113(4):1085-99. PubMed ID: 25429122 [TBL] [Abstract][Full Text] [Related]
15. The effect of total lignans from Fructus Arctii on Streptozotocin-induced diabetic retinopathy in Wistar rats. Zhang H; Gao Y; Zhang J; Wang K; Jin T; Wang H; Ruan K; Wu F; Xu Z J Ethnopharmacol; 2020 Jun; 255():112773. PubMed ID: 32199990 [TBL] [Abstract][Full Text] [Related]
16. Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Yokomizo H; Maeda Y; Park K; Clermont AC; Hernandez SL; Fickweiler W; Li Q; Wang CH; Paniagua SM; Simao F; Ishikado A; Sun B; Wu IH; Katagiri S; Pober DM; Tinsley LJ; Avery RL; Feener EP; Kern TS; Keenan HA; Aiello LP; Sun JK; King GL Sci Transl Med; 2019 Jul; 11(499):. PubMed ID: 31270273 [TBL] [Abstract][Full Text] [Related]
17. Caspase-14: a novel caspase in the retina with a potential role in diabetic retinopathy. Al-Shabrawey M; Ahmad S; Megyerdi S; Othman A; Baban B; Palenski TL; Shin ES; Gurel Z; Hsu S; Sheibani N Mol Vis; 2012; 18():1895-906. PubMed ID: 22876114 [TBL] [Abstract][Full Text] [Related]
18. Vitamin C alleviates hyperglycemic stress in retinal pigment epithelial cells. Alahmari H; Liu CC; Rubin E; Lin VY; Rodriguez P; Chang KC Mol Biol Rep; 2024 May; 51(1):637. PubMed ID: 38727927 [TBL] [Abstract][Full Text] [Related]
19. Polyphenol Metabolite Pyrogallol- Santos DF; Pais M; Santos CN; Silva GA Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768833 [TBL] [Abstract][Full Text] [Related]
20. Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression. Mohammad HMF; Sami MM; Makary S; Toraih EA; Mohamed AO; El-Ghaiesh SH Life Sci; 2019 Sep; 232():116588. PubMed ID: 31226418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]