These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33622858)

  • 1. Modeling Growth Kinetics, Interspecies Cell Fusion, and Metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii Syntrophic Coculture.
    Foster C; Charubin K; Papoutsakis ET; Maranas CD
    mSystems; 2021 Feb; 6(1):. PubMed ID: 33622858
    [No Abstract]   [Full Text] [Related]  

  • 2. Interspecies Microbial Fusion and Large-Scale Exchange of Cytoplasmic Proteins and RNA in a Syntrophic
    Charubin K; Modla S; Caplan JL; Papoutsakis ET
    mBio; 2020 Sep; 11(5):. PubMed ID: 32873766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of caproate (hexanoate) production using
    Otten JK; Zou Y; Papoutsakis ET
    Front Bioeng Biotechnol; 2022; 10():965614. PubMed ID: 36072287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins.
    Charubin K; Streett H; Papoutsakis ET
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO
    Charubin K; Papoutsakis ET
    Metab Eng; 2019 Mar; 52():9-19. PubMed ID: 30391511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel
    Fast AG; Papoutsakis ET
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic modeling of clostridia: current developments and applications.
    Dash S; Ng CY; Maranas CD
    FEMS Microbiol Lett; 2016 Feb; 363(4):. PubMed ID: 26755502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing.
    Salimi F; Zhuang K; Mahadevan R
    Biotechnol J; 2010 Jul; 5(7):726-38. PubMed ID: 20665645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528.
    Tan Y; Liu ZY; Liu Z; Li FL
    Enzyme Microb Technol; 2015 Nov; 79-80():1-7. PubMed ID: 26320708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528.
    Tan Y; Liu J; Liu Z; Li F
    J Basic Microbiol; 2014 Sep; 54(9):996-1004. PubMed ID: 23720212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii.
    Nagarajan H; Sahin M; Nogales J; Latif H; Lovley DR; Ebrahim A; Zengler K
    Microb Cell Fact; 2013 Nov; 12():118. PubMed ID: 24274140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H
    Zhu HF; Liu ZY; Zhou X; Yi JH; Lun ZM; Wang SN; Tang WZ; Li FL
    Front Microbiol; 2020; 11():416. PubMed ID: 32256473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
    Huang H; Chai C; Yang S; Jiang W; Gu Y
    Metab Eng; 2019 Mar; 52():293-302. PubMed ID: 30633974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico.
    McAnulty MJ; Yen JY; Freedman BG; Senger RS
    BMC Syst Biol; 2012 May; 6():42. PubMed ID: 22583864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.