These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33623070)

  • 1. Genome-wide transcriptome reveals mechanisms underlying Rlm1-mediated blackleg resistance on canola.
    Zhai C; Liu X; Song T; Yu F; Peng G
    Sci Rep; 2021 Feb; 11(1):4407. PubMed ID: 33623070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting R gene and host genetic background effect on the Brassica napus defense response to Leptosphaeria maculans.
    Haddadi P; Larkan NJ; Borhan MH
    Sci Rep; 2019 May; 9(1):6947. PubMed ID: 31061421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hormonal Responses to Susceptible, Intermediate, and Resistant Interactions in the
    Yang C; Fernando WGD
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance.
    Becker MG; Zhang X; Walker PL; Wan JC; Millar JL; Khan D; Granger MJ; Cavers JD; Chan AC; Fernando DWG; Belmonte MF
    Plant J; 2017 May; 90(3):573-586. PubMed ID: 28222234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Identification and Analysis of the Valine-Glutamine Motif-Containing Gene Family in
    Zou Z; Liu F; Huang S; Fernando WGD
    Phytopathology; 2021 Feb; 111(2):281-292. PubMed ID: 32804045
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Padmathilake KRE; Fernando WGD
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409323
    [No Abstract]   [Full Text] [Related]  

  • 7. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings.
    Haddadi P; Ma L; Wang H; Borhan MH
    Mol Plant Pathol; 2016 Oct; 17(8):1196-210. PubMed ID: 26679637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Oxidative Burst and Its Relevant Signaling Pathways in
    Yang C; Fernando WGD
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of resistance loci in Chinese and Canadian canola/rapeseed varieties against Leptosphaeria maculans based on genome-wide association studies.
    Fu F; Zhang X; Liu F; Peng G; Yu F; Fernando D
    BMC Genomics; 2020 Jul; 21(1):501. PubMed ID: 32693834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Findings Unravel Genes and Genetic Factors Underlying
    Cantila AY; Saad NSM; Amas JC; Edwards D; Batley J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus.
    Sašek V; Nováková M; Jindřichová B; Bóka K; Valentová O; Burketová L
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1238-50. PubMed ID: 22624662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1.
    Larkan NJ; Lydiate DJ; Parkin IAP; Nelson MN; Epp DJ; Cowling WA; Rimmer SR; Borhan MH
    New Phytol; 2013 Jan; 197(2):595-605. PubMed ID: 23206118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Mechanisms of Quantitative Resistance to
    Hubbard M; Zhai C; Peng G
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32650490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Less Virulent
    Padmathilake KRE; Fernando WGD
    Plants (Basel); 2022 Apr; 11(7):. PubMed ID: 35406977
    [No Abstract]   [Full Text] [Related]  

  • 15. Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing.
    Fu F; Liu X; Wang R; Zhai C; Peng G; Yu F; Fernando WGD
    Sci Rep; 2019 Oct; 9(1):14600. PubMed ID: 31601933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Brassica napus wall-associated kinase-like (WAKL) gene Rlm9 provides race-specific blackleg resistance.
    Larkan NJ; Ma L; Haddadi P; Buchwaldt M; Parkin IAP; Djavaheri M; Borhan MH
    Plant J; 2020 Nov; 104(4):892-900. PubMed ID: 32794614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae.
    Stotz HU; Harvey PJ; Haddadi P; Mashanova A; Kukol A; Larkan NJ; Borhan MH; Fitt BDL
    PLoS One; 2018; 13(6):e0198201. PubMed ID: 29856883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Race Structure of
    Diaz C; Cevallos F; Damicone J
    Plant Dis; 2019 Sep; 103(9):2353-2358. PubMed ID: 31313640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus).
    Amas J; Anderson R; Edwards D; Cowling W; Batley J
    Theor Appl Genet; 2021 Oct; 134(10):3123-3145. PubMed ID: 34104999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining R gene and quantitative resistance increases effectiveness of cultivar resistance against Leptosphaeria maculans in Brassica napus in different environments.
    Huang YJ; Mitrousia GK; Sidique SNM; Qi A; Fitt BDL
    PLoS One; 2018; 13(5):e0197752. PubMed ID: 29791484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.