BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33623109)

  • 1. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures.
    Sun L; Xu K; Huang W; Yang YT; Li P; Tang L; Xiong T; Zhang QC
    Cell Res; 2021 May; 31(5):495-516. PubMed ID: 33623109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Dynamic RBP-RNA Interactions Using PrismNet.
    Huang W; Zhang QC
    Methods Mol Biol; 2023; 2568():123-132. PubMed ID: 36227565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PrismNet: predicting protein-RNA interaction using in vivo RNA structural information.
    Xu Y; Zhu J; Huang W; Xu K; Yang R; Zhang QC; Sun L
    Nucleic Acids Res; 2023 Jul; 51(W1):W468-W477. PubMed ID: 37140045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RBPsuite: RNA-protein binding sites prediction suite based on deep learning.
    Pan X; Fang Y; Li X; Yang Y; Shen HB
    BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAProt: an efficient and feature-rich RNA binding protein binding site predictor.
    Uhl M; Tran VD; Heyl F; Backofen R
    Gigascience; 2021 Aug; 10(8):. PubMed ID: 34406415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.
    Okholm TLH; Sathe S; Park SS; Kamstrup AB; Rasmussen AM; Shankar A; Chua ZM; Fristrup N; Nielsen MM; Vang S; Dyrskjøt L; Aigner S; Damgaard CK; Yeo GW; Pedersen JS
    Genome Med; 2020 Dec; 12(1):112. PubMed ID: 33287884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Experimental Procedures.
    Han T; Kim JK
    Methods Mol Biol; 2016; 1361():77-90. PubMed ID: 26483017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins.
    Hafner M; Landthaler M; Burger L; Khorshid M; Hausser J; Berninger P; Rothballer A; Ascano M; Jungkamp AC; Munschauer M; Ulrich A; Wardle GS; Dewell S; Zavolan M; Tuschl T
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Bioinformatic Analysis.
    Freeberg MA; Kim JK
    Methods Mol Biol; 2016; 1361():91-104. PubMed ID: 26483018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet.
    Zhu H; Yang Y; Wang Y; Wang F; Huang Y; Chang Y; Wong KC; Li X
    Nat Commun; 2023 Oct; 14(1):6824. PubMed ID: 37884495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beRBP: binding estimation for human RNA-binding proteins.
    Yu H; Wang J; Sheng Q; Liu Q; Shyr Y
    Nucleic Acids Res; 2019 Mar; 47(5):e26. PubMed ID: 30590704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Analysis of RNA-Protein Interactions via Deep Sequencing.
    Li L; Förstner KU; Chao Y
    Methods Mol Biol; 2018; 1751():171-182. PubMed ID: 29508297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of Allele-Specific Protein-RNA Interactions in Human Transcriptomes.
    Bahrami-Samani E; Xing Y
    Am J Hum Genet; 2019 Mar; 104(3):492-502. PubMed ID: 30827501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.