These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33623538)

  • 1. Establishment and Verification of Multiaxis Fatigue Life Prediction Model.
    Fu Z; Li X; Zhang S; Xiong H; Liu C; Li K
    Scanning; 2021; 2021():8875958. PubMed ID: 33623538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creep-Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy.
    Dong Y; Liu J; Liu Y; Li H; Zhang X; Hu X
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Fatigue Life of Aluminum Alloy 6061-T6 Based on Random Defect Characteristics.
    Lu L; Chen H; Ren M; Xu S; Li Y; Zhou T; Yang Y
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new stress field intensity model and its application in component high cycle fatigue research.
    Sun S
    PLoS One; 2020; 15(7):e0235323. PubMed ID: 32692776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Test of 6082 Aluminum Alloy under Random Load with Controlled Kurtosis.
    Owsiński R; Niesłony A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33578988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential Effects of Deep Rolling and Post-Weld Heat Treatment on Surface Integrity of AA7075-T651 Aluminum Alloy Friction Stir Welding.
    Baisukhan A; Nakkiew W
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31717709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties of Aluminum Alloys under Low-Cycle Fatigue Loading.
    Zhao X; Li H; Chen T; Cao B; Li X
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fretting Fatigue Life Prediction of Dovetail Structure Based on Plastic Effect and Sensitivity Analysis of Influencing Factors.
    Zhou J; Yang B; Li S; Huo J
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Above-knee prosthesis design based on fatigue life using finite element method and design of experiment.
    Phanphet S; Dechjarern S; Jomjanyong S
    Med Eng Phys; 2017 May; 43():86-91. PubMed ID: 28258824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified nonlinear damage accumulation model for fatigue life prediction considering load interaction effects.
    Gao H; Huang HZ; Zhu SP; Li YF; Yuan R
    ScientificWorldJournal; 2014; 2014():164378. PubMed ID: 24574866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis.
    Scattina A; Alovisi M; Paolino DS; Pasqualini D; Scotti N; Chiandussi G; Berutti E
    J Endod; 2015 Nov; 41(11):1867-70. PubMed ID: 26361644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.
    Szajek K; Wierszycki M
    Acta Bioeng Biomech; 2016; 18(1):103-13. PubMed ID: 27150312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States.
    Kurek M
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate relative fatigue life estimation methods for thin-walled monolithic ceramic crowns.
    Nasrin S; Katsube N; Seghi RR; Rokhlin SI
    Dent Mater; 2018 May; 34(5):726-736. PubMed ID: 29402538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials.
    Gao X; Shao Y; Xie L; Wang Y; Yang D
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue Reliability Characterisation of Effective Strain Damage Model Using Extreme Value Distribution for Road Load Conditions.
    Abdullah L; Karam Singh SS; Abdullah S; Ariffin AK; Zainal SSM
    Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating.
    Lee YJ; Cho S
    Sensors (Basel); 2016 Mar; 16(3):317. PubMed ID: 26950125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-Empirical Prediction of Residual Stress Profiles in Machining IN718 Alloy Using Bimodal Gaussian Curve.
    Dong P; Peng H; Cheng X; Xing Y; Tang W; Zhou X
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.