These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33623825)

  • 41. Managing Complex Workflows in Bioinformatics: An Interactive Toolkit With GPU Acceleration.
    Welivita A; Perera I; Meedeniya D; Wickramarachchi A; Mallawaarachchi V
    IEEE Trans Nanobioscience; 2018 Jul; 17(3):199-208. PubMed ID: 29994533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Computational Workflow for the Automated Generation of Models of Genetic Designs.
    Misirli G; Nguyen T; McLaughlin JA; Vaidyanathan P; Jones TS; Densmore D; Myers C; Wipat A
    ACS Synth Biol; 2019 Jul; 8(7):1548-1559. PubMed ID: 29782151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies.
    Li Y; Liu J; Adekunle D; Bown L; Tahlan K; Bignell DRD
    Mol Plant Pathol; 2019 Oct; 20(10):1379-1393. PubMed ID: 31282068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surfactin secreted by
    Feng RY; Chen YH; Lin C; Tsai CH; Yang YL; Chen YL
    Front Plant Sci; 2022; 13():998707. PubMed ID: 36388520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ILIAD: a suite of automated Snakemake workflows for processing genomic data for downstream applications.
    Herrick N; Walsh S
    BMC Bioinformatics; 2023 Nov; 24(1):424. PubMed ID: 37940870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Swiss CAT+, a Data-driven Infrastructure for Accelerated Catalysts Discovery and Optimization.
    Laveille P; Miéville P; Chatterjee S; Clerc E; Cousty JC; De Nanteuil F; Lam E; Mariano E; Ramirez A; Randrianarisoa U; Villat K; Copéret C; Cramer N
    Chimia (Aarau); 2023 Mar; 77(3):154-158. PubMed ID: 38047820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kronos: a workflow assembler for genome analytics and informatics.
    Taghiyar MJ; Rosner J; Grewal D; Grande BM; Aniba R; Grewal J; Boutros PC; Morin RD; Bashashati A; Shah SP
    Gigascience; 2017 Jul; 6(7):1-10. PubMed ID: 28655203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Potential Biocontrol Agent
    Sarwar A; Latif Z; Zhang S; Hao J; Bechthold A
    Front Microbiol; 2019; 10():202. PubMed ID: 30800116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative High-Throughput Screening Methods Designed for Identification of Bacterial Biocontrol Strains with Antifungal Properties.
    Kjeldgaard B; Neves AR; Fonseca C; Kovács ÁT; Domínguez-Cuevas P
    Microbiol Spectr; 2022 Apr; 10(2):e0143321. PubMed ID: 35254137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An automated workflow to screen alkene reductases using high-throughput thin layer chromatography.
    Garabedian BM; Meadows CW; Mingardon F; Guenther JM; de Rond T; Abourjeily R; Lee TS
    Biotechnol Biofuels; 2020 Nov; 13(1):184. PubMed ID: 33292503
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new Streptomyces scabies-infecting bacteriophage from Egypt with promising biocontrol traits.
    Abdelrhim AS; Ahmad AA; Omar MOA; Hammad AMM; Huang Q
    Arch Microbiol; 2021 Sep; 203(7):4233-4242. PubMed ID: 34091692
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Integrated Computer-Aided Design and Manufacturing Workflow for Synthetic Biology.
    Oberortner E; Evans R; Meng X; Nath S; Plahar H; Simirenko L; Tarver A; Deutsch S; Hillson NJ; Cheng JF
    Methods Mol Biol; 2020; 2205():3-18. PubMed ID: 32809190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in analytical tools for high throughput strain engineering.
    Marcellin E; Nielsen LK
    Curr Opin Biotechnol; 2018 Dec; 54():33-40. PubMed ID: 29448095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identifying impact of software dependencies on replicability of biomedical workflows.
    Miksa T; Rauber A; Mina E
    J Biomed Inform; 2016 Dec; 64():232-254. PubMed ID: 27789415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Building Better Bacteriophage with Biofoundries to Combat Antibiotic-Resistant Bacteria.
    Weynberg KD; Jaschke PR
    Phage (New Rochelle); 2020 Mar; 1(1):23-26. PubMed ID: 36147618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A role for Biofoundries in rapid development and validation of automated SARS-CoV-2 clinical diagnostics.
    Crone MA; Priestman M; Ciechonska M; Jensen K; Sharp DJ; Anand A; Randell P; Storch M; Freemont PS
    Nat Commun; 2020 Sep; 11(1):4464. PubMed ID: 32900994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Procedural Framework for Benchmarking Biofoundry Capabilities.
    Hillson NJ
    ACS Synth Biol; 2023 Dec; 12(12):3778-3782. PubMed ID: 37943942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the Coronatine-Like Phytotoxins Produced by the Common Scab Pathogen Streptomyces scabies.
    Fyans JK; Altowairish MS; Li Y; Bignell DR
    Mol Plant Microbe Interact; 2015 Apr; 28(4):443-54. PubMed ID: 25423263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic and physiological determinants of Streptomyces scabies pathogenicity.
    Lerat S; Simao-Beaunoir AM; Beaulieu C
    Mol Plant Pathol; 2009 Sep; 10(5):579-85. PubMed ID: 19694949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.