These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33624317)

  • 21. A General Mechanism of Green-to-Red Photoconversions of GFP.
    Gorbachev DA; Petrusevich EF; Kabylda AM; Maksimov EG; Lukyanov KA; Bogdanov AM; Baranov MS; Bochenkova AV; Mishin AS
    Front Mol Biosci; 2020; 7():176. PubMed ID: 32850965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and mechanism of the photoactivatable green fluorescent protein.
    Henderson JN; Gepshtein R; Heenan JR; Kallio K; Huppert D; Remington SJ
    J Am Chem Soc; 2009 Apr; 131(12):4176-7. PubMed ID: 19278226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence relaxation in 3D from diffraction-limited sources of PAGFP or sinks of EGFP created by multiphoton photoconversion.
    Calvert PD; Peet JA; Bragin A; Schiesser WE; Pugh EN
    J Microsc; 2007 Jan; 225(Pt 1):49-71. PubMed ID: 17286695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural events in the photocycle of green fluorescent protein.
    van Thor JJ; Zanetti G; Ronayne KL; Towrie M
    J Phys Chem B; 2005 Aug; 109(33):16099-108. PubMed ID: 16853046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of green to red photoconversion of GFP during fluorescent microscopy by carbon source and oxygen availability.
    Bidiuk VA; Agaphonov MO; Alexandrov AI
    Yeast; 2021 May; 38(5):295-301. PubMed ID: 33295038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green fluorescent protein as a noninvasive intracellular pH indicator.
    Kneen M; Farinas J; Li Y; Verkman AS
    Biophys J; 1998 Mar; 74(3):1591-9. PubMed ID: 9512054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutagenic stabilization of the photocycle intermediate of green fluorescent protein (GFP).
    Wiehler J; Jung G; Seebacher C; Zumbusch A; Steipe B
    Chembiochem; 2003 Nov; 4(11):1164-71. PubMed ID: 14613107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciphering the Role of Positions 145 and 165 in Fluorescence Lifetime Shortening in the EGFP Variants.
    Mamontova AV; Shakhov AM; Lukyanov KA; Bogdanov AM
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33202759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced yellow fluorescent protein photoconversion to a cyan fluorescent protein-like species is sensitive to thermal and diffusion conditions.
    Raarup MK; Fjorback AW; Jensen SM; Müller HK; Kjaergaard MM; Poulsen H; Wiborg O; Nyengaard JR
    J Biomed Opt; 2009; 14(3):034039. PubMed ID: 19566331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-Specific Fragmentation of Green Fluorescent Protein Induced by Blue Light.
    Heckmeier PJ; Langosch D
    Biochemistry; 2021 Aug; 60(32):2457-2462. PubMed ID: 34314163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UV excited-state photoresponse of biochromophore negative ions.
    Bochenkova AV; Klærke B; Rahbek DB; Rajput J; Toker Y; Andersen LH
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9797-801. PubMed ID: 25044707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the photoconversion on reaction of the fluorescent protein Kaede on the single-molecule level.
    Dittrich PS; Schäfer SP; Schwille P
    Biophys J; 2005 Nov; 89(5):3446-55. PubMed ID: 16055537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excited state dynamics of the isolated green fluorescent protein chromophore anion following UV excitation.
    West CW; Bull JN; Hudson AS; Cobb SL; Verlet JR
    J Phys Chem B; 2015 Mar; 119(10):3982-7. PubMed ID: 25686152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222.
    Arpino JA; Rizkallah PJ; Jones DD
    PLoS One; 2012; 7(10):e47132. PubMed ID: 23077555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoconversion of the fluorescent protein EosFP: a hybrid potential simulation study reveals intersystem crossings.
    Lelimousin M; Adam V; Nienhaus GU; Bourgeois D; Field MJ
    J Am Chem Soc; 2009 Nov; 131(46):16814-23. PubMed ID: 19886627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light driven ultrafast electron transfer in oxidative redding of Green Fluorescent Proteins.
    Saha R; Verma PK; Rakshit S; Saha S; Mayor S; Pal SK
    Sci Rep; 2013; 3():1580. PubMed ID: 23552964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.
    Bravaya KB; Khrenova MG; Grigorenko BL; Nemukhin AV; Krylov AI
    J Phys Chem B; 2011 Jun; 115(25):8296-303. PubMed ID: 21591720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein.
    Ando R; Hama H; Yamamoto-Hino M; Mizuno H; Miyawaki A
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12651-6. PubMed ID: 12271129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222.
    van Thor JJ; Gensch T; Hellingwerf KJ; Johnson LN
    Nat Struct Biol; 2002 Jan; 9(1):37-41. PubMed ID: 11740505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.