BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 33624556)

  • 21. Hypoxia-induced acute lung injury in murine models of sickle cell disease.
    Pritchard KA; Ou J; Ou Z; Shi Y; Franciosi JP; Signorino P; Kaul S; Ackland-Berglund C; Witte K; Holzhauer S; Mohandas N; Guice KS; Oldham KT; Hillery CA
    Am J Physiol Lung Cell Mol Physiol; 2004 Apr; 286(4):L705-14. PubMed ID: 12972407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease.
    Morris CR; Kato GJ; Poljakovic M; Wang X; Blackwelder WC; Sachdev V; Hazen SL; Vichinsky EP; Morris SM; Gladwin MT
    JAMA; 2005 Jul; 294(1):81-90. PubMed ID: 15998894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea.
    Lopes FC; Traina F; Almeida CB; Leonardo FC; Franco-Penteado CF; Garrido VT; Colella MP; Soares R; Olalla-Saad ST; Costa FF; Conran N
    Haematologica; 2015 Jun; 100(6):730-9. PubMed ID: 25769545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasma levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell disease.
    Schnog JB; Teerlink T; van der Dijs FP; Duits AJ; Muskiet FA;
    Ann Hematol; 2005 May; 84(5):282-6. PubMed ID: 15599544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a metabolic shift of arginine metabolism in sickle cell disease.
    Schnog JJ; Jager EH; van der Dijs FP; Duits AJ; Moshage H; Muskiet FD; Muskiet FA
    Ann Hematol; 2004 Jun; 83(6):371-5. PubMed ID: 15054669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide production from hydroxyurea.
    King SB
    Free Radic Biol Med; 2004 Sep; 37(6):737-44. PubMed ID: 15304249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sickle cell disease: role of reactive oxygen and nitrogen metabolites.
    Wood KC; Granger DN
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):926-32. PubMed ID: 17645642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide and cyclic GMP levels in sickle cell patients receiving hydroxyurea.
    Nahavandi M; Tavakkoli F; Wyche MQ; Perlin E; Winter WP; Castro O
    Br J Haematol; 2002 Dec; 119(3):855-7. PubMed ID: 12437671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A genetic variation associated with plasma erythropoietin and a non-coding transcript of PRKAR1A in sickle cell disease.
    Zhang X; Shah BN; Zhang W; Saraf SL; Miasnikova G; Sergueeva A; Ammosova T; Niu X; Nouraie M; Nekhai S; Castro O; Gladwin MT; Prchal JT; Garcia JG; Machado RF; Gordeuk VR
    Hum Mol Genet; 2016 Oct; 25(20):4601-4609. PubMed ID: 28173069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arginine metabolism and nitric oxide bioavailability in sickle cell disease.
    Jain S; Gladwin MT
    J Pediatr Hematol Oncol; 2010 Oct; 32(7):e247-8. PubMed ID: 20724948
    [No Abstract]   [Full Text] [Related]  

  • 31. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment.
    Piccin A; Murphy C; Eakins E; Rondinelli MB; Daves M; Vecchiato C; Wolf D; Mc Mahon C; Smith OP
    Eur J Haematol; 2019 Apr; 102(4):319-330. PubMed ID: 30664257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease.
    Zimmerman SA; Schultz WH; Davis JS; Pickens CV; Mortier NA; Howard TA; Ware RE
    Blood; 2004 Mar; 103(6):2039-45. PubMed ID: 14630791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice.
    Kaul DK; Liu XD; Chang HY; Nagel RL; Fabry ME
    J Clin Invest; 2004 Oct; 114(8):1136-45. PubMed ID: 15489961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteinuria in adults with sickle-cell disease: the role of hydroxycarbamide(hydroxyurea) as a protective agent.
    Silva Junior GB; Vieira AP; Couto Bem AX; Alves MP; Meneses GC; Martins AM; Araújo SM; Libório AV; Daher EF
    Int J Clin Pharm; 2014 Aug; 36(4):766-70. PubMed ID: 24934760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemoglobin oxidation-dependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles.
    Jana S; Strader MB; Meng F; Hicks W; Kassa T; Tarandovskiy I; De Paoli S; Simak J; Heaven MR; Belcher JD; Vercellotti GM; Alayash AI
    JCI Insight; 2018 Nov; 3(21):. PubMed ID: 30385713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of DAGLβ as a therapeutic target for pain in sickle cell disease.
    Khasabova IA; Gable J; Johns M; Khasabov SG; Kalyuzhny AE; Golovko MY; Golovko SA; Kiven S; Gupta K; Seybold VS; Simone DA
    Haematologica; 2023 Mar; 108(3):859-869. PubMed ID: 35615929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Most adults with severe HbSC disease are not treated with hydroxyurea.
    Ghunney WK; Asare EV; Ayete-Nyampong JB; Oppong SA; Rodeghier M; DeBaun MR; Olayemi E
    Blood Adv; 2023 Jul; 7(13):3312-3319. PubMed ID: 36799926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of vascular instability in a transgenic mouse model of sickle cell disease.
    Nath KA; Shah V; Haggard JJ; Croatt AJ; Smith LA; Hebbel RP; Katusic ZS
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R1949-55. PubMed ID: 11080057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design, Synthesis, and Investigation of Novel Nitric Oxide (NO)-Releasing Aromatic Aldehydes as Drug Candidates for the Treatment of Sickle Cell Disease.
    Huang B; Ghatge MS; Donkor AK; Musayev FN; Deshpande TM; Al-Awadh M; Alhashimi RT; Zhu H; Omar AM; Telen MJ; Zhang Y; McMahon TJ; Abdulmalik O; Safo MK
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Urinary dysfunction in transgenic sickle cell mice: model of idiopathic overactive bladder syndrome.
    Karakus S; Anele UA; Silva FH; Musicki B; Burnett AL
    Am J Physiol Renal Physiol; 2019 Sep; 317(3):F540-F546. PubMed ID: 31215803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.