These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
608 related articles for article (PubMed ID: 33624608)
1. [Application of artificial intelligence for detection and classification of colon polyps]. Wang X; Huang J; Ji X; Zhu Z Nan Fang Yi Ke Da Xue Xue Bao; 2021 Feb; 41(2):310-313. PubMed ID: 33624608 [TBL] [Abstract][Full Text] [Related]
2. Computer-aided automated diminutive colonic polyp detection in colonoscopy by using deep machine learning system; first indigenous algorithm developed in India. Mazumdar S; Sinha S; Jha S; Jagtap B Indian J Gastroenterol; 2023 Apr; 42(2):226-232. PubMed ID: 37145230 [TBL] [Abstract][Full Text] [Related]
3. Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do? Azer SA Medicina (Kaunas); 2019 Aug; 55(8):. PubMed ID: 31409050 [TBL] [Abstract][Full Text] [Related]
4. Diagnostic Accuracy of Artificial Intelligence and Computer-Aided Diagnosis for the Detection and Characterization of Colorectal Polyps: Systematic Review and Meta-analysis. Nazarian S; Glover B; Ashrafian H; Darzi A; Teare J J Med Internet Res; 2021 Jul; 23(7):e27370. PubMed ID: 34259645 [TBL] [Abstract][Full Text] [Related]
5. Artificial intelligence for the early detection of colorectal cancer: A comprehensive review of its advantages and misconceptions. Viscaino M; Torres Bustos J; Muñoz P; Auat Cheein C; Cheein FA World J Gastroenterol; 2021 Oct; 27(38):6399-6414. PubMed ID: 34720530 [TBL] [Abstract][Full Text] [Related]
6. Application of Artificial Intelligence in the Detection and Characterization of Colorectal Neoplasm. Kim KO; Kim EY Gut Liver; 2021 May; 15(3):346-353. PubMed ID: 32773386 [TBL] [Abstract][Full Text] [Related]
7. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience. Komeda Y; Handa H; Watanabe T; Nomura T; Kitahashi M; Sakurai T; Okamoto A; Minami T; Kono M; Arizumi T; Takenaka M; Hagiwara S; Matsui S; Nishida N; Kashida H; Kudo M Oncology; 2017; 93 Suppl 1():30-34. PubMed ID: 29258081 [TBL] [Abstract][Full Text] [Related]
8. Artificial intelligence for identification and characterization of colonic polyps. Parsa N; Byrne MF Ther Adv Gastrointest Endosc; 2021; 14():26317745211014698. PubMed ID: 34263163 [TBL] [Abstract][Full Text] [Related]
9. Current status and future perspective on artificial intelligence for lower endoscopy. Misawa M; Kudo SE; Mori Y; Maeda Y; Ogawa Y; Ichimasa K; Kudo T; Wakamura K; Hayashi T; Miyachi H; Baba T; Ishida F; Itoh H; Oda M; Mori K Dig Endosc; 2021 Jan; 33(2):273-284. PubMed ID: 32969051 [TBL] [Abstract][Full Text] [Related]
10. Colorectal polyp characterization with standard endoscopy: Will Artificial Intelligence succeed where human eyes failed? Parsa N; Rex DK; Byrne MF Best Pract Res Clin Gastroenterol; 2021; 52-53():101736. PubMed ID: 34172255 [TBL] [Abstract][Full Text] [Related]
11. An overview of deep learning algorithms and water exchange in colonoscopy in improving adenoma detection. Hsieh YH; Leung FW Expert Rev Gastroenterol Hepatol; 2019 Dec; 13(12):1153-1160. PubMed ID: 31755802 [No Abstract] [Full Text] [Related]
12. Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects. Wang KW; Dong M World J Gastroenterol; 2020 Sep; 26(34):5090-5100. PubMed ID: 32982111 [TBL] [Abstract][Full Text] [Related]
13. The impact of deep convolutional neural network-based artificial intelligence on colonoscopy outcomes: A systematic review with meta-analysis. Aziz M; Fatima R; Dong C; Lee-Smith W; Nawras A J Gastroenterol Hepatol; 2020 Oct; 35(10):1676-1683. PubMed ID: 32267558 [TBL] [Abstract][Full Text] [Related]
14. A novel machine learning-based algorithm to identify and classify lesions and anatomical landmarks in colonoscopy images. Jheng YC; Wang YP; Lin HE; Sung KY; Chu YC; Wang HS; Jiang JK; Hou MC; Lee FY; Lu CL Surg Endosc; 2022 Jan; 36(1):640-650. PubMed ID: 33591447 [TBL] [Abstract][Full Text] [Related]
15. The application of artificial intelligence in improving colonoscopic adenoma detection rate: Where are we and where are we going. Gan P; Li P; Xia H; Zhou X; Tang X Gastroenterol Hepatol; 2023 Mar; 46(3):203-213. PubMed ID: 35489584 [TBL] [Abstract][Full Text] [Related]
16. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Byrne MF; Chapados N; Soudan F; Oertel C; Linares Pérez M; Kelly R; Iqbal N; Chandelier F; Rex DK Gut; 2019 Jan; 68(1):94-100. PubMed ID: 29066576 [TBL] [Abstract][Full Text] [Related]
17. Use of artificial intelligence in improving adenoma detection rate during colonoscopy: Might both endoscopists and pathologists be further helped. Sinagra E; Badalamenti M; Maida M; Spadaccini M; Maselli R; Rossi F; Conoscenti G; Raimondo D; Pallio S; Repici A; Anderloni A World J Gastroenterol; 2020 Oct; 26(39):5911-5918. PubMed ID: 33132644 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence-assisted colonoscopy: a narrative review of current data and clinical applications. Li JW; Wang LM; Ang TL Singapore Med J; 2022 Mar; 63(3):118-124. PubMed ID: 35509251 [TBL] [Abstract][Full Text] [Related]
19. Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning. Zhao SB; Yang W; Wang SL; Pan P; Wang RD; Chang X; Sun ZQ; Fu XH; Shang H; Wu JR; Chen LZ; Chang J; Song P; Miao YL; He SX; Miao L; Jiang HQ; Wang W; Yang X; Dong YH; Lin H; Chen Y; Gao J; Meng QQ; Jin ZD; Li ZS; Bai Y World J Gastroenterol; 2021 Aug; 27(31):5232-5246. PubMed ID: 34497447 [TBL] [Abstract][Full Text] [Related]
20. Is artificial intelligence the final answer to missed polyps in colonoscopy? Lui TKL; Leung WK World J Gastroenterol; 2020 Sep; 26(35):5248-5255. PubMed ID: 32994685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]