These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 33624608)

  • 21. Automatic Detection of Colorectal Polyps Using Transfer Learning.
    Dulf EH; Bledea M; Mocan T; Mocan L
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial intelligence in colonoscopy.
    Joseph J; LePage EM; Cheney CP; Pawa R
    World J Gastroenterol; 2021 Aug; 27(29):4802-4817. PubMed ID: 34447227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiclassification of Endoscopic Colonoscopy Images Based on Deep Transfer Learning.
    Wang Y; Feng Z; Song L; Liu X; Liu S
    Comput Math Methods Med; 2021; 2021():2485934. PubMed ID: 34306173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current status and limitations of artificial intelligence in colonoscopy.
    Hann A; Troya J; Fitting D
    United European Gastroenterol J; 2021 Jun; 9(5):527-533. PubMed ID: 34617420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overview of Deep Learning in Gastrointestinal Endoscopy.
    Min JK; Kwak MS; Cha JM
    Gut Liver; 2019 Jan; 13(4):388-393. PubMed ID: 30630221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial intelligence technologies for the detection of colorectal lesions: The future is now.
    Attardo S; Chandrasekar VT; Spadaccini M; Maselli R; Patel HK; Desai M; Capogreco A; Badalamenti M; Galtieri PA; Pellegatta G; Fugazza A; Carrara S; Anderloni A; Occhipinti P; Hassan C; Sharma P; Repici A
    World J Gastroenterol; 2020 Oct; 26(37):5606-5616. PubMed ID: 33088155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical diagnosis of colorectal polyps using convolutional neural networks.
    Kader R; Hadjinicolaou AV; Georgiades F; Stoyanov D; Lovat LB
    World J Gastroenterol; 2021 Sep; 27(35):5908-5918. PubMed ID: 34629808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.
    Jin EH; Lee D; Bae JH; Kang HY; Kwak MS; Seo JY; Yang JI; Yang SY; Lim SH; Yim JY; Lim JH; Chung GE; Chung SJ; Choi JM; Han YM; Kang SJ; Lee J; Chan Kim H; Kim JS
    Gastroenterology; 2020 Jun; 158(8):2169-2179.e8. PubMed ID: 32119927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectiveness of a Deep-learning Polyp Detection System in Prospectively Collected Colonoscopy Videos With Variable Bowel Preparation Quality.
    Becq A; Chandnani M; Bharadwaj S; Baran B; Ernest-Suarez K; Gabr M; Glissen-Brown J; Sawhney M; Pleskow DK; Berzin TM
    J Clin Gastroenterol; 2020 Jul; 54(6):554-557. PubMed ID: 31789758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovering the first US FDA-approved computer-aided polyp detection system.
    Spadaccini M; Marco A; Franchellucci G; Sharma P; Hassan C; Repici A
    Future Oncol; 2022 Apr; 18(11):1405-1412. PubMed ID: 35081745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial Intelligence-Aided Colonoscopy for Polyp Detection: A Systematic Review and Meta-Analysis of Randomized Clinical Trials.
    Zhang Y; Zhang X; Wu Q; Gu C; Wang Z
    J Laparoendosc Adv Surg Tech A; 2021 Oct; 31(10):1143-1149. PubMed ID: 33524298
    [No Abstract]   [Full Text] [Related]  

  • 32. Artificial Intelligence in Colonoscopy.
    Mansour NM
    Curr Gastroenterol Rep; 2023 Jun; 25(6):122-129. PubMed ID: 37129831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approaches.
    Liew WS; Tang TB; Lin CH; Lu CK
    Comput Methods Programs Biomed; 2021 Jul; 206():106114. PubMed ID: 33984661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial intelligence-aided colonoscopy: Recent developments and future perspectives.
    Antonelli G; Gkolfakis P; Tziatzios G; Papanikolaou IS; Triantafyllou K; Hassan C
    World J Gastroenterol; 2020 Dec; 26(47):7436-7443. PubMed ID: 33384546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection.
    Xu L; He X; Zhou J; Zhang J; Mao X; Ye G; Chen Q; Xu F; Sang J; Wang J; Ding Y; Li Y; Yu C
    Cancer Med; 2021 Oct; 10(20):7184-7193. PubMed ID: 34477306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions.
    Brand M; Troya J; Krenzer A; Saßmannshausen Z; Zoller WG; Meining A; Lux TJ; Hann A
    United European Gastroenterol J; 2022 Jun; 10(5):477-484. PubMed ID: 35511456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of artificial intelligence on colorectal polyp detection.
    Antonelli G; Badalamenti M; Hassan C; Repici A
    Best Pract Res Clin Gastroenterol; 2021; 52-53():101713. PubMed ID: 34172246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Artificial Intelligence in the Detection and Differentiation of Colon Polyps: A Technical Review for Physicians.
    Chao WL; Manickavasagan H; Krishna SG
    Diagnostics (Basel); 2019 Aug; 9(3):. PubMed ID: 31434208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An improved deep learning approach and its applications on colonic polyp images detection.
    Wang W; Tian J; Zhang C; Luo Y; Wang X; Li J
    BMC Med Imaging; 2020 Jul; 20(1):83. PubMed ID: 32698839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial intelligence-based endoscopic diagnosis of colorectal polyps using residual networks.
    Komeda Y; Handa H; Matsui R; Hatori S; Yamamoto R; Sakurai T; Takenaka M; Hagiwara S; Nishida N; Kashida H; Watanabe T; Kudo M
    PLoS One; 2021; 16(6):e0253585. PubMed ID: 34157030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.