These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 33624824)

  • 1. The NAC transcription factor FaRIF controls fruit ripening in strawberry.
    Martín-Pizarro C; Vallarino JG; Osorio S; Meco V; Urrutia M; Pillet J; Casañal A; Merchante C; Amaya I; Willmitzer L; Fernie AR; Giovannoni JJ; Botella MA; Valpuesta V; Posé D
    Plant Cell; 2021 Jul; 33(5):1574-1593. PubMed ID: 33624824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits.
    Medina-Puche L; Cumplido-Laso G; Amil-Ruiz F; Hoffmann T; Ring L; Rodríguez-Franco A; Caballero JL; Schwab W; Muñoz-Blanco J; Blanco-Portales R
    J Exp Bot; 2014 Feb; 65(2):401-17. PubMed ID: 24277278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of eight phytohormone concentrations, expression levels of ABA biosynthesis genes, and ripening-related transcription factors during fruit development in strawberry.
    Kim J; Lee JG; Hong Y; Lee EJ
    J Plant Physiol; 2019 Aug; 239():52-60. PubMed ID: 31185317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module.
    Chen X; Gao J; Shen Y
    Plant J; 2024 Aug; 119(3):1400-1417. PubMed ID: 38815085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles.
    Molina-Hidalgo FJ; Medina-Puche L; Cañete-Gómez C; Franco-Zorrilla JM; López-Vidriero I; Solano R; Caballero JL; Rodríguez-Franco A; Blanco-Portales R; Muñoz-Blanco J; Moyano E
    J Exp Bot; 2017 Jul; 68(16):4529-4543. PubMed ID: 28981772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits.
    Moyano E; Martínez-Rivas FJ; Blanco-Portales R; Molina-Hidalgo FJ; Ric-Varas P; Matas-Arroyo AJ; Caballero JL; Muñoz-Blanco J; Rodríguez-Franco A
    PLoS One; 2018; 13(5):e0196953. PubMed ID: 29723301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.
    Jia H; Jiu S; Zhang C; Wang C; Tariq P; Liu Z; Wang B; Cui L; Fang J
    Plant Biotechnol J; 2016 Oct; 14(10):2045-65. PubMed ID: 27005823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit.
    Concha CM; Figueroa NE; Poblete LA; Oñate FA; Schwab W; Figueroa CR
    Plant Physiol Biochem; 2013 Sep; 70():433-44. PubMed ID: 23835361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.
    Medina-Puche L; Molina-Hidalgo FJ; Boersma M; Schuurink RC; López-Vidriero I; Solano R; Franco-Zorrilla JM; Caballero JL; Blanco-Portales R; Muñoz-Blanco J
    Plant Physiol; 2015 Jun; 168(2):598-614. PubMed ID: 25931522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening.
    Han Y; Dang R; Li J; Jiang J; Zhang N; Jia M; Wei L; Li Z; Li B; Jia W
    Plant Physiol; 2015 Mar; 167(3):915-30. PubMed ID: 25609556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening.
    Jia H; Wang Y; Sun M; Li B; Han Y; Zhao Y; Li X; Ding N; Li C; Ji W; Jia W
    New Phytol; 2013 Apr; 198(2):453-465. PubMed ID: 23425297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue.
    Seymour GB; Ryder CD; Cevik V; Hammond JP; Popovich A; King GJ; Vrebalov J; Giovannoni JJ; Manning K
    J Exp Bot; 2011 Jan; 62(3):1179-88. PubMed ID: 21115665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis.
    Luo Y; Ge C; Ling Y; Mo F; Yang M; Jiang L; Chen Q; Lin Y; Sun B; Zhang Y; Wang Y; Li M; Wang X; Tang H
    Mol Genet Genomics; 2020 Mar; 295(2):421-438. PubMed ID: 31807909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene application at the immature stage of Fragaria chiloensis fruit represses the anthocyanin biosynthesis with a concomitant accumulation of lignin.
    Figueroa NE; Gatica-Meléndez C; Figueroa CR
    Food Chem; 2021 Oct; 358():129913. PubMed ID: 33933955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening.
    Gu T; Jia S; Huang X; Wang L; Fu W; Huo G; Gan L; Ding J; Li Y
    Planta; 2019 Jul; 250(1):145-162. PubMed ID: 30949762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa).
    Jang YJ; Kim T; Lin M; Kim J; Begcy K; Liu Z; Lee S
    BMC Plant Biol; 2024 Sep; 24(1):876. PubMed ID: 39304822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.
    Li D; Li L; Luo Z; Mou W; Mao L; Ying T
    PLoS One; 2015; 10(6):e0130037. PubMed ID: 26053069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening.
    Vallarino JG; Osorio S; Bombarely A; Casañal A; Cruz-Rus E; Sánchez-Sevilla JF; Amaya I; Giavalisco P; Fernie AR; Botella MA; Valpuesta V
    New Phytol; 2015 Oct; 208(2):482-96. PubMed ID: 26010039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening.
    Li X; Martín-Pizarro C; Zhou L; Hou B; Wang Y; Shen Y; Li B; Posé D; Qin G
    Plant Cell; 2023 Oct; 35(11):4020-4045. PubMed ID: 37506031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle.
    Medina-Puche L; Martínez-Rivas FJ; Molina-Hidalgo FJ; Mercado JA; Moyano E; Rodríguez-Franco A; Caballero JL; Muñoz-Blanco J; Blanco-Portales R
    BMC Plant Biol; 2019 Dec; 19(1):586. PubMed ID: 31881835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.