These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 33624824)
41. Contrasting dynamics in abscisic acid metabolism in different Fragaria spp. during fruit ripening and identification of the enzymes involved. Figueroa NE; Hoffmann T; Olbricht K; Abrams SR; Schwab W J Exp Bot; 2021 Feb; 72(4):1245-1259. PubMed ID: 33130885 [TBL] [Abstract][Full Text] [Related]
42. Involvement of three annexin genes in the ripening of strawberry fruit regulated by phytohormone and calcium signal transduction. Chen J; Mao L; Mi H; Lu W; Ying T; Luo Z Plant Cell Rep; 2016 Apr; 35(4):733-43. PubMed ID: 26724928 [TBL] [Abstract][Full Text] [Related]
43. Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit. Molina-Hidalgo FJ; Medina-Puche L; Gelis S; Ramos J; Sabir F; Soveral G; Prista C; Iglesias-Fernández R; Caballero JL; Muñoz-Blanco J; Blanco-Portales R Plant Sci; 2015 Sep; 238():198-211. PubMed ID: 26259188 [TBL] [Abstract][Full Text] [Related]
44. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). Qi X; Dong Y; Liu C; Song L; Chen L; Li M Physiol Plant; 2022 Nov; 174(6):e13834. PubMed ID: 36437693 [TBL] [Abstract][Full Text] [Related]
45. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Quesada MA; Blanco-Portales R; Posé S; García-Gago JA; Jiménez-Bermúdez S; Muñoz-Serrano A; Caballero JL; Pliego-Alfaro F; Mercado JA; Muñoz-Blanco J Plant Physiol; 2009 Jun; 150(2):1022-32. PubMed ID: 19395408 [TBL] [Abstract][Full Text] [Related]
46. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Wei L; Mao W; Jia M; Xing S; Ali U; Zhao Y; Chen Y; Cao M; Dai Z; Zhang K; Dou Z; Jia W; Li B J Exp Bot; 2018 Sep; 69(20):4805-4820. PubMed ID: 30085079 [TBL] [Abstract][Full Text] [Related]
47. N Zhou L; Tang R; Li X; Tian S; Li B; Qin G Genome Biol; 2021 Jun; 22(1):168. PubMed ID: 34078442 [TBL] [Abstract][Full Text] [Related]
48. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Xie YG; Ma YY; Bi PP; Wei W; Liu J; Hu Y; Gou YJ; Zhu D; Wen YQ; Feng JY Plant Physiol Biochem; 2020 Jan; 146():374-383. PubMed ID: 31794898 [TBL] [Abstract][Full Text] [Related]
49. SRNAome and transcriptome analysis provide insight into strawberry fruit ripening. Wang Y; Li W; Chang H; Zhou J; Luo Y; Zhang K; Zuo J; Wang B Genomics; 2020 May; 112(3):2369-2378. PubMed ID: 31945464 [TBL] [Abstract][Full Text] [Related]
50. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit. Carrasco-Orellana C; Stappung Y; Mendez-Yañez A; Allan AC; Espley RV; Plunkett BJ; Moya-Leon MA; Herrera R Sci Rep; 2018 Jul; 8(1):10524. PubMed ID: 30002382 [TBL] [Abstract][Full Text] [Related]
51. Transcriptome analysis around the onset of strawberry fruit ripening uncovers an important role of oxidative phosphorylation in ripening. Wang QH; Zhao C; Zhang M; Li YZ; Shen YY; Guo JX Sci Rep; 2017 Feb; 7():41477. PubMed ID: 28195221 [TBL] [Abstract][Full Text] [Related]
52. Gibberellin biosynthesis and signalling during development of the strawberry receptacle. Csukasi F; Osorio S; Gutierrez JR; Kitamura J; Giavalisco P; Nakajima M; Fernie AR; Rathjen JP; Botella MA; Valpuesta V; Medina-Escobar N New Phytol; 2011 Jul; 191(2):376-390. PubMed ID: 21443649 [TBL] [Abstract][Full Text] [Related]
53. Importance of FaWRKY71 in Strawberry ( Yue M; Jiang L; Zhang N; Zhang L; Liu Y; Wang Y; Li M; Lin Y; Zhang Y; Zhang Y; Luo Y; Wang X; Chen Q; Tang H Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293343 [TBL] [Abstract][Full Text] [Related]
54. Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene. Guo J; Wang S; Yu X; Dong R; Li Y; Mei X; Shen Y Plant Physiol; 2018 May; 177(1):339-351. PubMed ID: 29523717 [TBL] [Abstract][Full Text] [Related]
55. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Chen J; Mao L; Lu W; Ying T; Luo Z Planta; 2016 Jan; 243(1):183-97. PubMed ID: 26373937 [TBL] [Abstract][Full Text] [Related]
56. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). Wu H; Li H; Chen H; Qi Q; Ding Q; Xue J; Ding J; Jiang X; Hou X; Li Y BMC Plant Biol; 2019 Feb; 19(1):73. PubMed ID: 30764758 [TBL] [Abstract][Full Text] [Related]
57. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening. Xue C; Guan SC; Chen JQ; Wen CJ; Cai JF; Chen X BMC Plant Biol; 2020 Jan; 20(1):13. PubMed ID: 31914938 [TBL] [Abstract][Full Text] [Related]
58. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Pombo MA; Martínez GA; Civello PM Plant Sci; 2011 Aug; 181(2):111-8. PubMed ID: 21683875 [TBL] [Abstract][Full Text] [Related]
59. Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization. Pimentel P; Salvatierra A; Moya-León MA; Herrera R J Plant Physiol; 2010 Sep; 167(14):1179-87. PubMed ID: 20413181 [TBL] [Abstract][Full Text] [Related]
60. Insights into the Genes Involved in ABA Biosynthesis and Perception during Development and Ripening of the Chilean Strawberry Fruit. Moya-León MA; Stappung Y; Mattus-Araya E; Herrera R Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239876 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]