These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33625424)
21. A Site-Selective Doping Strategy of Carbon Anodes with Remarkable K-Ion Storage Capacity. Zhang W; Cao Z; Wang W; Alhajji E; Emwas AH; Costa PMFJ; Cavallo L; Alshareef HN Angew Chem Int Ed Engl; 2020 Mar; 59(11):4448-4455. PubMed ID: 31943603 [TBL] [Abstract][Full Text] [Related]
22. Boosting the Potassium-Ion Storage Performance in Soft Carbon Anodes by the Synergistic Effect of Optimized Molten Salt Medium and N/S Dual-Doping. Liu Q; Han F; Zhou J; Li Y; Chen L; Zhang F; Zhou D; Ye C; Yang J; Wu X; Liu J ACS Appl Mater Interfaces; 2020 May; 12(18):20838-20848. PubMed ID: 32294380 [TBL] [Abstract][Full Text] [Related]
23. A Flexible Sulfur-Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. Sun X; Wang C; Gong Y; Gu L; Chen Q; Yu Y Small; 2018 Aug; 14(35):e1802218. PubMed ID: 30079621 [TBL] [Abstract][Full Text] [Related]
24. High Sulfur-doped hollow carbon sphere with multicavity for high-performance Potassium-ion hybrid capacitors. Liu L; Li Y; Wang S; Lu Y; Zhang J; Wang D; Ding Y; Qiu D; Niu J; Yu Y; Chen X; Song H J Colloid Interface Sci; 2022 Dec; 628(Pt A):975-983. PubMed ID: 35964444 [TBL] [Abstract][Full Text] [Related]
25. Rational Design and General Synthesis of S-Doped Hard Carbon with Tunable Doping Sites toward Excellent Na-Ion Storage Performance. Hong Z; Zhen Y; Ruan Y; Kang M; Zhou K; Zhang JM; Huang Z; Wei M Adv Mater; 2018 May; ():e1802035. PubMed ID: 29808566 [TBL] [Abstract][Full Text] [Related]
26. Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries. Liu H; Jia M; Sun N; Cao B; Chen R; Zhu Q; Wu F; Qiao N; Xu B ACS Appl Mater Interfaces; 2015 Dec; 7(49):27124-30. PubMed ID: 26588502 [TBL] [Abstract][Full Text] [Related]
27. Sulfur-Doped Carbon for Potassium-Ion Battery Anode: Insight into the Doping and Potassium Storage Mechanism of Sulfur. Qiu D; Zhang B; Zhang T; Shen T; Zhao Z; Hou Y ACS Nano; 2022 Dec; 16(12):21443-21451. PubMed ID: 36484831 [TBL] [Abstract][Full Text] [Related]
28. Binder-Free N- and O-Rich Carbon Nanofiber Anodes for Long Cycle Life K-Ion Batteries. Adams RA; Syu JM; Zhao Y; Lo CT; Varma A; Pol VG ACS Appl Mater Interfaces; 2017 May; 9(21):17872-17881. PubMed ID: 28485975 [TBL] [Abstract][Full Text] [Related]
29. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. Ning G; Ma X; Zhu X; Cao Y; Sun Y; Qi C; Fan Z; Li Y; Zhang X; Lan X; Gao J ACS Appl Mater Interfaces; 2014 Sep; 6(18):15950-8. PubMed ID: 25188430 [TBL] [Abstract][Full Text] [Related]
30. Optimizing the Interlayer Spacing of Heteroatom-Doped Carbon Nanofibers toward Ultrahigh Potassium-Storage Performances. Zheng F; Chu K; Yang Y; Li Z; Wei L; Xu Y; Yao G; Chen Q ACS Appl Mater Interfaces; 2022 Feb; 14(7):9212-9221. PubMed ID: 35152696 [TBL] [Abstract][Full Text] [Related]
31. Ether-based electrolytes enable the application of nitrogen and sulfur co-doped 3D graphene frameworks as anodes in high-performance sodium-ion batteries. Gao X; Dong X; Xing Z; Jamila S; Hong H; Jiang H; Zhang J; Ju Z Nanoscale; 2023 Jan; 15(4):1568-1582. PubMed ID: 36723149 [TBL] [Abstract][Full Text] [Related]
32. Sulfur-Rich Graphene Nanoboxes with Ultra-High Potassiation Capacity at Fast Charge: Storage Mechanisms and Device Performance. Sun Y; Wang H; Wei W; Zheng Y; Tao L; Wang Y; Huang M; Shi J; Shi ZC; Mitlin D ACS Nano; 2021 Jan; 15(1):1652-1665. PubMed ID: 33369384 [TBL] [Abstract][Full Text] [Related]
33. High Sulfur-Doped Hard Carbon with Advanced Potassium Storage Capacity via a Molten Salt Method. Zhang Y; Li L; Xiang Y; Zou G; Hou H; Deng W; Ji X ACS Appl Mater Interfaces; 2020 Jul; 12(27):30431-30437. PubMed ID: 32515939 [TBL] [Abstract][Full Text] [Related]
34. Short-Range Graphitic Nanodomains in Hypocrystalline Carbon Nanotubes Realize Fast Potassium Ion Migration and Multidirection Stress Release. Chu J; Zhang C; Wu X; Xing L; Zhang J; Zhang L; Wang H; Wang W; Yu Q Small; 2023 Dec; 19(50):e2304406. PubMed ID: 37616512 [TBL] [Abstract][Full Text] [Related]
35. In Situ Formation of Co Wang Y; Wang Y; Wang YX; Feng X; Chen W; Qian J; Ai X; Yang H; Cao Y ACS Appl Mater Interfaces; 2019 May; 11(21):19218-19226. PubMed ID: 31055908 [TBL] [Abstract][Full Text] [Related]
36. Sub-20 nm Carbon Nanoparticles with Expanded Interlayer Spacing for High-Performance Potassium Storage. Gan Q; Xie J; Zhu Y; Zhang F; Zhang P; He Z; Liu S ACS Appl Mater Interfaces; 2019 Jan; 11(1):930-939. PubMed ID: 30550259 [TBL] [Abstract][Full Text] [Related]
37. Sulfur-Mediated Interface Engineering Enables Fast SnS Nanosheet Anodes for Advanced Lithium/Sodium-Ion Batteries. Cheng Y; Wang Z; Chang L; Wang S; Sun Q; Yi Z; Wang L ACS Appl Mater Interfaces; 2020 Jun; 12(23):25786-25797. PubMed ID: 32463654 [TBL] [Abstract][Full Text] [Related]
38. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. Zheng Z; Wu HH; Liu H; Zhang Q; He X; Yu S; Petrova V; Feng J; Kostecki R; Liu P; Peng DL; Liu M; Wang MS ACS Nano; 2020 Aug; 14(8):9545-9561. PubMed ID: 32658458 [TBL] [Abstract][Full Text] [Related]
39. Engineering Hierarchical CoO Nanospheres Wrapped by Graphene via Controllable Sulfur Doping for Superior Li Ion Storage. Hu Y; Li Z; Hu Z; Wang L; Ma R; Wang J Small; 2020 Oct; 16(42):e2003643. PubMed ID: 32996291 [TBL] [Abstract][Full Text] [Related]
40. Facile Synthesis of Nitrogen-Containing Mesoporous Carbon for High-Performance Energy Storage Applications. Xu Y; Wang J; Chang Z; Ding B; Wang Y; Shen L; Mi C; Dou H; Zhang X Chemistry; 2016 Mar; 22(12):4256-62. PubMed ID: 26849174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]