BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33625598)

  • 21. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization.
    She C; Liu J; Diao Y; Hu Z; Song Y
    J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements.
    Zhang P; Li W; Fellers J; Friebe B; Gill BS
    Chromosoma; 2004 Mar; 112(6):288-99. PubMed ID: 14986017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patterns of rDNA and telomeric sequences diversification: contribution to repetitive DNA organization in Phyllostomidae bats.
    Calixto Mda S; de Andrade IS; Cabral-de-Mello DC; Santos N; Martins C; Loreto V; de Souza MJ
    Genetica; 2014 Feb; 142(1):49-58. PubMed ID: 24368540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary dynamics of repetitive DNA in semaprochilodus (characiformes, prochilodontidae): a fish model for sex chromosome differentiation.
    Terencio ML; Schneider CH; Gross MC; Vicari MR; Farias IP; Passos KB; Feldberg E
    Sex Dev; 2013; 7(6):325-33. PubMed ID: 24296872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA.
    Meyne J; Goodwin EH; Moyzis RK
    Chromosoma; 1994 Apr; 103(2):99-103. PubMed ID: 8055716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple non-toxic ethylene carbonate fluorescence in situ hybridization (EC-FISH) for simultaneous detection of repetitive DNA sequences and fluorescent bands in plants.
    Golczyk H
    Protoplasma; 2019 May; 256(3):873-880. PubMed ID: 30656455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structurally Complex Organization of Repetitive DNAs in the Genome of Cobia (Rachycentron canadum).
    Costa GW; Cioffi Mde B; Bertollo LA; Molina WF
    Zebrafish; 2015 Jun; 12(3):215-20. PubMed ID: 25719607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. W Chromosome Dynamics in Triportheus Species (Characiformes, Triportheidae): An Ongoing Process Narrated by Repetitive Sequences.
    Yano CF; Bertollo LA; Liehr T; Troy WP; Cioffi Mde B
    J Hered; 2016 Jul; 107(4):342-8. PubMed ID: 27036509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing.
    da Silva MJ; Fogarin Destro R; Gazoni T; Narimatsu H; Pereira Dos Santos PS; Haddad CFB; Parise-Maltempi PP
    Cytogenet Genome Res; 2020; 160(3):141-147. PubMed ID: 32146462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA, chromosomes, and in situ hybridization.
    Schwarzacher T
    Genome; 2003 Dec; 46(6):953-62. PubMed ID: 14663512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput physical mapping of chromosomes using automated in situ hybridization.
    George P; Sharakhova MV; Sharakhov IV
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Karyotype analysis and chromosomal distribution of repetitive DNA sequences of cucumis metuliferus using fluorescence in situ hybridization.
    Yagi K; Siedlecka E; Pawełkowicz M; Wojcieszek M; Przybecki Z; Tagashira N; Hoshi Y; Malepszy S; Pląder W
    Cytogenet Genome Res; 2014; 144(3):237-42. PubMed ID: 25402685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TCAGG, an alternative telomeric sequence in insects.
    Mravinac B; Meštrović N; Cavrak VV; Plohl M
    Chromosoma; 2011 Aug; 120(4):367-76. PubMed ID: 21499744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh.
    Begum R; Alam SS; Menzel G; Schmidt T
    Ann Bot; 2009 Oct; 104(5):863-72. PubMed ID: 19635741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of repetitive DNA in chromosomes by flow cytometry.
    Brind'Amour J; Lansdorp PM
    Nat Methods; 2011 Jun; 8(6):484-6. PubMed ID: 21532581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.
    Carvalho ND; Pinheiro VS; Carmo EJ; Goll LG; Schneider CH; Gross MC
    Cytogenet Genome Res; 2015; 147(2-3):161-8. PubMed ID: 26867142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FISH mapping and molecular organization of the major repetitive sequences of tomato.
    Chang SB; Yang TJ; Datema E; van Vugt J; Vosman B; Kuipers A; Meznikova M; Szinay D; Lankhorst RK; Jacobsen E; de Jong H
    Chromosome Res; 2008; 16(7):919-33. PubMed ID: 18688733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soybean chromosome painting: a strategy for somatic cytogenetics.
    Shi L; Zhu T; Morgante M; Rafalski JA; Keim P
    J Hered; 1996; 87(4):308-13. PubMed ID: 8776877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesises vertebrate-type telomere sequences.
    Weiss-Schneeweiss H; Riha K; Jang CG; Puizina J; Scherthan H; Schweizer D
    Plant J; 2004 Feb; 37(4):484-93. PubMed ID: 14756758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.