These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33625787)

  • 1. In Vivo Phage Display as a Biomarker Discovery Tool for the Complex Neural Injury Microenvironment.
    Martinez BI; Stabenfeldt SE
    Curr Protoc; 2021 Feb; 1(2):e67. PubMed ID: 33625787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering temporospatial sensitive TBI targeting strategies via in vivo phage display.
    Martinez BI; Mousa GA; Fleck K; MacCulloch T; Diehnelt CW; Stephanopoulos N; Stabenfeldt SE
    Sci Adv; 2022 Jul; 8(29):eabo5047. PubMed ID: 35867794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage display for identification of serum biomarkers of traumatic brain injury.
    Ghoshal S; Bondada V; Saatman KE; Guttmann RP; Geddes JW
    J Neurosci Methods; 2016 Oct; 272():33-37. PubMed ID: 27168498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Next Generation Sequencing (NGS) in Phage Displayed Peptide Selection to Support the Identification of Arsenic-Binding Motifs.
    Braun R; Schönberger N; Vinke S; Lederer F; Kalinowski J; Pollmann K
    Viruses; 2020 Nov; 12(12):. PubMed ID: 33261041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Single-Chain Variable Fragment (scFv) Libraries for Use in Phage Display.
    Schladetsch MA; Wiemer AJ
    Curr Protoc; 2021 Jul; 1(7):e182. PubMed ID: 34232564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibody Isolation from Human Synthetic Libraries of Single-Chain Antibodies and Analysis Using NGS.
    Amir A; Taussig D; Bitton A; Nahary L; Vaisman-Mentesh A; Benhar I; Wine Y
    Methods Mol Biol; 2023; 2702():347-372. PubMed ID: 37679629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring Phage Biopanning by Next-Generation Sequencing.
    Vaisman-Mentesh A; Wine Y
    Methods Mol Biol; 2018; 1701():463-473. PubMed ID: 29116522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Application of Computational Methods in Phage Display Technology.
    He B; Dzisoo AM; Derda R; Huang J
    Curr Med Chem; 2019; 26(42):7672-7693. PubMed ID: 29956612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A White Plaque, Associated with Genomic Deletion, Derived from M13KE-Based Peptide Library Is Enriched in a Target-Unrelated Manner during Phage Display Biopanning Due to Propagation Advantage.
    Kamstrup Sell D; Sloth AB; Bakhshinejad B; Kjaer A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing Phage Display for the Discovery of Peptide-Based Drugs and Monoclonal Antibodies.
    Li Y; Liu M; Xie S
    Curr Med Chem; 2021; 28(40):8267-8274. PubMed ID: 33176631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep sequencing of phage display libraries to support antibody discovery.
    Ravn U; Didelot G; Venet S; Ng KT; Gueneau F; Rousseau F; Calloud S; Kosco-Vilbois M; Fischer N
    Methods; 2013 Mar; 60(1):99-110. PubMed ID: 23500657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library.
    Bakhshinejad B; Zade HM; Shekarabi HS; Neman S
    Amino Acids; 2016 Dec; 48(12):2699-2716. PubMed ID: 27650972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Phage Display Biopanning Strategies for the Selection of Anti-Cell Surface Receptor Antibodies.
    Panagides N; Zacchi LF; De Souza MJ; Morales RAV; Karnowski A; Liddament MT; Owczarek CM; Mahler SM; Panousis C; Jones ML; Fercher C
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocols for Building and Producing High Diversity Peptide Phage Display Libraries.
    Giordano RJ; Alecrim LC
    Methods Mol Biol; 2024; 2793():3-19. PubMed ID: 38526720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of phage display libraries for therapeutic antibody discovery.
    Zhang Y
    MAbs; 2023; 15(1):2213793. PubMed ID: 37222232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor-Targeting Peptides Search Strategy for the Delivery of Therapeutic and Diagnostic Molecules to Tumor Cells.
    Dmitrieva MD; Voitova AA; Dymova MA; Richter VA; Kuligina EV
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera.
    Ionov Y; Rogovskyy AS
    PLoS One; 2020; 15(1):e0226378. PubMed ID: 31940357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel colon adenocarcinoma cell targeting peptide using phage display library biopanning.
    Bakhshinejad B; Sadeghizadeh M
    Biotechnol Appl Biochem; 2022 Dec; 69(6):2753-2765. PubMed ID: 35103339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand Selection for Affinity Chromatography Using Phage Display.
    Bozovičar K; Molek P; Bizjan BJ; Bratkovič T
    Methods Mol Biol; 2022; 2466():159-185. PubMed ID: 35585318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth of Sequencing Plays a Determining Role in the Characterization of Phage Display Peptide Libraries by NGS.
    Sloth AB; Bakhshinejad B; Stavnsbjerg C; Rossing M; Kjaer A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.