These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33625864)

  • 1. Simple and Efficient Microsolid-Phase Extraction Tip-Based Sample Preparation Workflow to Enable Sensitive Proteomic Profiling of Limited Samples (200 to 10,000 Cells).
    Kostas JC; Greguš M; Schejbal J; Ray S; Ivanov AR
    J Proteome Res; 2021 Mar; 20(3):1676-1688. PubMed ID: 33625864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Micro-SPE-Based Bottom-Up Proteomic Workflow for Sensitive Analysis of Limited Samples.
    Zimmerman AJ; Greguš M; Ivanov AR
    Methods Mol Biol; 2024; 2817():19-31. PubMed ID: 38907144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized nLC-MS workflow for laser capture microdissected breast cancer tissue.
    Braakman RB; Tilanus-Linthorst MM; Liu NQ; Stingl C; Dekker LJ; Luider TM; Martens JW; Foekens JA; Umar A
    J Proteomics; 2012 Jun; 75(10):2844-54. PubMed ID: 22296676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells.
    Xu K; Liang Y; Piehowski PD; Dou M; Schwarz KC; Zhao R; Sontag RL; Moore RJ; Zhu Y; Kelly RT
    Anal Bioanal Chem; 2019 Jul; 411(19):4587-4596. PubMed ID: 30460388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automation of peptide desalting for proteomic liquid chromatography - tandem mass spectrometry by centrifugal microfluidics.
    Klatt JN; Dinh TJ; Schilling O; Zengerle R; Schmidt F; Hutzenlaub T; Paust N
    Lab Chip; 2021 Jun; 21(11):2255-2264. PubMed ID: 33908535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated "Cells-To-Peptides" Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes.
    Chen Y; Guenther JM; Gin JW; Chan LJG; Costello Z; Ogorzalek TL; Tran HM; Blake-Hedges JM; Keasling JD; Adams PD; García Martín H; Hillson NJ; Petzold CJ
    J Proteome Res; 2019 Oct; 18(10):3752-3761. PubMed ID: 31436101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
    Yang Y; Tian R
    Se Pu; 2020 Oct; 38(10):1125-1132. PubMed ID: 34213109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection.
    Zhang L; Lanzoni G; Battarra M; Inverardi L; Zhang Q
    J Proteomics; 2017 Jan; 150():149-159. PubMed ID: 27620696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics.
    Williams SM; Liyu AV; Tsai CF; Moore RJ; Orton DJ; Chrisler WB; Gaffrey MJ; Liu T; Smith RD; Kelly RT; Pasa-Tolic L; Zhu Y
    Anal Chem; 2020 Aug; 92(15):10588-10596. PubMed ID: 32639140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range.
    Sielaff M; Kuharev J; Bohn T; Hahlbrock J; Bopp T; Tenzer S; Distler U
    J Proteome Res; 2017 Nov; 16(11):4060-4072. PubMed ID: 28948796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Sample Preparation for Mass Spectrometry-Based Clinical Proteomics.
    Müller T; Cremonini MA; Kliewer G; Krijgsveld J
    Methods Mol Biol; 2023; 2718():181-211. PubMed ID: 37665461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urine Proteomics: Evaluation of Different Sample Preparation Workflows for Quantitative, Reproducible, and Improved Depth of Analysis.
    Ding H; Fazelinia H; Spruce LA; Weiss DA; Zderic SA; Seeholzer SH
    J Proteome Res; 2020 Apr; 19(4):1857-1862. PubMed ID: 32129078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Two Solid-Phase Extraction (SPE) Methods for the Identification and Quantification of Porcine Retinal Protein Markers by LC-MS/MS.
    Schmelter C; Funke S; Treml J; Beschnitt A; Perumal N; Manicam C; Pfeiffer N; Grus FH
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome.
    Duan X; Young R; Straubinger RM; Page B; Cao J; Wang H; Yu H; Canty JM; Qu J
    J Proteome Res; 2009 Jun; 8(6):2838-50. PubMed ID: 19290621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
    Fu Q; Kowalski MP; Mastali M; Parker SJ; Sobhani K; van den Broek I; Hunter CL; Van Eyk JE
    J Proteome Res; 2018 Jan; 17(1):420-428. PubMed ID: 29083196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative proteomic workflow for characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free mass spectrometry.
    Shapiro JP; Biswas S; Merchant AS; Satoskar A; Taslim C; Lin S; Rovin BH; Sen CK; Roy S; Freitas MA
    J Proteomics; 2012 Dec; 77():433-40. PubMed ID: 23022584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis.
    Fu Q; Murray CI; Karpov OA; Van Eyk JE
    Mass Spectrom Rev; 2023 Mar; 42(2):873-886. PubMed ID: 34786750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants.
    Leipert J; Tholey A
    Lab Chip; 2019 Oct; 19(20):3490-3498. PubMed ID: 31531506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling suspension trapping-based sample preparation and data-independent acquisition mass spectrometry for sensitive exosomal proteomic analysis.
    Wu C; Zhou S; Mitchell MI; Hou C; Byers S; Loudig O; Ma J
    Anal Bioanal Chem; 2022 Mar; 414(8):2585-2595. PubMed ID: 35181835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.