BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33625939)

  • 1. Muscarinic receptor blockade causes postcontraction enhancement in corticospinal excitability following maximal contractions.
    Dempsey LM; Kavanagh JJ
    J Neurophysiol; 2021 Apr; 125(4):1269-1278. PubMed ID: 33625939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human corticospinal-motoneuronal output is reduced with 5-HT
    Thorstensen JR; Taylor JL; Kavanagh JJ
    J Neurophysiol; 2021 Apr; 125(4):1279-1288. PubMed ID: 33596722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic acetylcholine activity modulates cortical silent period, but not motor evoked potentials, during muscle contractions.
    Dempsey LM; Kavanagh JJ
    Exp Brain Res; 2023 Jun; 241(6):1543-1553. PubMed ID: 37103494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human motoneurone excitability is depressed by activation of serotonin 1A receptors with buspirone.
    D'Amico JM; Butler AA; Héroux ME; Cotel F; Perrier JM; Butler JE; Gandevia SC; Taylor JL
    J Physiol; 2017 Mar; 595(5):1763-1773. PubMed ID: 27859267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitatory drive to spinal motoneurones is necessary for serotonin to modulate motoneurone excitability via 5-HT
    Henderson TT; Taylor JL; Thorstensen JR; Kavanagh JJ
    Eur J Neurosci; 2024 Jan; 59(1):17-35. PubMed ID: 37994250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced availability of serotonin increases activation of unfatigued muscle but exacerbates central fatigue during prolonged sustained contractions.
    Kavanagh JJ; McFarland AJ; Taylor JL
    J Physiol; 2019 Jan; 597(1):319-332. PubMed ID: 30328105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW; Gale LH; Buckle NCM; Button DC
    Physiol Rep; 2017 Apr; 5(8):. PubMed ID: 28455452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ; Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected factors affecting the excitability of human motoneurones in voluntary and stimulated contractions.
    Khan SI; Taylor JL; Gandevia SC
    J Physiol; 2016 May; 594(10):2707-17. PubMed ID: 26940402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced availability of serotonin limits muscle activation during high-intensity, but not low-intensity, fatiguing contractions.
    Henderson TT; Taylor JL; Thorstensen JR; Tucker MG; Kavanagh JJ
    J Neurophysiol; 2022 Oct; 128(4):751-762. PubMed ID: 36001790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study.
    McKay WB; Tuel SM; Sherwood AM; Stokić DS; Dimitrijević MR
    Exp Brain Res; 1995; 105(2):276-82. PubMed ID: 7498380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S
    Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D; Romero-Arenas S; Lundbye-Jensen J; Hortobágyi T; Márquez G
    J Appl Physiol (1985); 2019 Oct; 127(4):1128-1139. PubMed ID: 31436513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.
    Kalmar JM; Cafarelli E
    J Appl Physiol (1985); 2006 Jun; 100(6):1757-64. PubMed ID: 16424071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional demanded excitability changes of human hand motor area.
    Ni Z; Takahashi M; Yamashita T; Liang N; Tanaka Y; Tsuji T; Yahagi S; Kasai T
    Exp Brain Res; 2006 Apr; 170(2):141-8. PubMed ID: 16328281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M; Temesi J; Rupp T; Levy P; Millet GY; Verges S
    Neuroscience; 2013 Feb; 231():384-99. PubMed ID: 23131709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.