These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33625968)

  • 1. Diversification or Collapse of Self-Incompatibility Haplotypes as a Rescue Process.
    Harkness A; Goldberg EE; Brandvain Y
    Am Nat; 2021 Mar; 197(3):E89-E109. PubMed ID: 33625968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Have Self-Incompatibility Haplotypes Diversified? Generation of New Haplotypes during the Evolution of Self-Incompatibility from Self-Compatibility.
    Sakai S
    Am Nat; 2016 Aug; 188(2):163-74. PubMed ID: 27420782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and diversification dynamics of self-incompatibility haplotypes.
    Gervais CE; Castric V; Ressayre A; Billiard S
    Genetics; 2011 Jul; 188(3):625-36. PubMed ID: 21515570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence divergence and loss-of-function phenotypes of S locus F-box brothers genes are consistent with non-self recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia).
    Kakui H; Kato M; Ushijima K; Kitaguchi M; Kato S; Sassa H
    Plant J; 2011 Dec; 68(6):1028-38. PubMed ID: 21851432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Nonself-Recognition System.
    Bod'ová K; Priklopil T; Field DL; Barton NH; Pickup M
    Genetics; 2018 Jul; 209(3):861-883. PubMed ID: 29716955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All 17 S-locus F-box proteins of the S2 - and S3 -haplotypes of Petunia inflata are assembled into similar SCF complexes with a specific function in self-incompatibility.
    Li S; Williams JS; Sun P; Kao TH
    Plant J; 2016 Sep; 87(6):606-16. PubMed ID: 27233616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing selection and the crossing of fitness valleys in structured populations: diversification in the gametophytic self-incompatibility system.
    Stetsenko R; Brom T; Castric V; Billiard S
    Evolution; 2023 Mar; 77(3):907-920. PubMed ID: 36626822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial invasion of gametophytic self-incompatibility alleles in the absence of tight linkage between pollen and pistil S alleles.
    Sakai S; Wakoh H
    Am Nat; 2014 Aug; 184(2):248-57. PubMed ID: 25058284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolutionary dynamics of self-incompatibility systems.
    Newbigin E; Uyenoyama MK
    Trends Genet; 2005 Sep; 21(9):500-5. PubMed ID: 16023253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus.
    Hauck NR; Yamane H; Tao R; Iezzoni AF
    Genetics; 2006 Feb; 172(2):1191-8. PubMed ID: 16219786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PollenCALC: software for estimation of pollen compatibility of self-incompatible allo- and autotetraploid species.
    Aguirre AA; Wollenweber B; Frei UK; Lübberstedt T
    BMC Bioinformatics; 2012 Jun; 13():125. PubMed ID: 22676372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-Locus F-Box Proteins Are Solely Responsible for S-RNase-Based Self-Incompatibility of
    Sun L; Williams JS; Li S; Wu L; Khatri WA; Stone PG; Keebaugh MD; Kao TH
    Plant Cell; 2018 Dec; 30(12):2959-2972. PubMed ID: 30377238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in two pollen self-incompatibility factors in geographically marginal populations of Solanum habrochaites impact mating system transitions and reproductive isolation.
    Markova DN; Petersen JJ; Qin X; Short DR; Valle MJ; Tovar-Méndez A; McClure BA; Chetelat RT
    Am J Bot; 2016 Oct; 103(10):1847-1861. PubMed ID: 27793860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary dynamics of self-incompatibility alleles in Brassica.
    Uyenoyama MK
    Genetics; 2000 Sep; 156(1):351-9. PubMed ID: 10978298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower.
    Roda F; Hopkins R
    New Phytol; 2019 Jan; 221(1):553-564. PubMed ID: 29992588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of dominance in sporophytic self-incompatibility systems: I. Genetic load and coevolution of levels of dominance in pollen and pistil.
    Llaurens V; Billiard S; Castric V; Vekemans X
    Evolution; 2009 Sep; 63(9):2427-37. PubMed ID: 19473398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Molecular and Cellular Regulation of Brassicaceae Self-Incompatibility and Self-Pollen Rejection.
    Jany E; Nelles H; Goring DR
    Int Rev Cell Mol Biol; 2019; 343():1-35. PubMed ID: 30712670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does frequency-dependent selection with complex dominance interactions accurately predict allelic frequencies at the self-incompatibility locus in Arabidopsis halleri?
    Llaurens V; Billiard S; Leducq JB; Castric V; Klein EK; Vekemans X
    Evolution; 2008 Oct; 62(10):2545-57. PubMed ID: 18647339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M.
    Muñoz-Sanz JV; Zuriaga E; López I; Badenes ML; Romero C
    BMC Plant Biol; 2017 Apr; 17(1):82. PubMed ID: 28441955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paternal-specific S-allele transmission in sweet cherry (Prunus avium L.): the potential for sexual selection.
    Hedhly A; Wünsch A; Kartal Ö; Herrero M; Hormaza JI
    J Evol Biol; 2016 Mar; 29(3):490-501. PubMed ID: 26559165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.