These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 33626353)

  • 41. Genetic Analysis of
    Kim SH; Iyer KR; Pardeshi L; Muñoz JF; Robbins N; Cuomo CA; Wong KH; Cowen LE
    mBio; 2019 Jan; 10(1):. PubMed ID: 30696744
    [No Abstract]   [Full Text] [Related]  

  • 42. Signaling through protein kinases and transcriptional regulators in Candida albicans.
    Dhillon NK; Sharma S; Khuller GK
    Crit Rev Microbiol; 2003; 29(3):259-75. PubMed ID: 14582620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sho1p Connects Glycolysis to Ras1-cAMP Signaling and Is Required for Microcolony Formation in Candida albicans.
    Kumar R; Maulik M; Pathirana RU; Cullen PJ; Edgerton M
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32641426
    [No Abstract]   [Full Text] [Related]  

  • 44. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans.
    Childers DS; Kadosh D
    PLoS One; 2015; 10(3):e0122775. PubMed ID: 25811669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multi-protein complex controls cAMP signalling and filamentation in the fungal pathogen Candida albicans.
    Hall RA; Mühlschlegel FA
    Mol Microbiol; 2010 Feb; 75(3):534-7. PubMed ID: 20015145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence.
    O'Meara TR; Cowen LE
    Cell Microbiol; 2014 Apr; 16(4):473-81. PubMed ID: 24438186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional divergence of a global regulatory complex governing fungal filamentation.
    Polvi EJ; Veri AO; Liu Z; Hossain S; Hyde S; Kim SH; Tebbji F; Sellam A; Todd RT; Xie JL; Lin ZY; Wong CJ; Shapiro RS; Whiteway M; Robbins N; Gingras AC; Selmecki A; Cowen LE
    PLoS Genet; 2019 Jan; 15(1):e1007901. PubMed ID: 30615616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Candida albicans hyphal initiation and elongation.
    Lu Y; Su C; Liu H
    Trends Microbiol; 2014 Dec; 22(12):707-14. PubMed ID: 25262420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.
    LaFayette SL; Collins C; Zaas AK; Schell WA; Betancourt-Quiroz M; Gunatilaka AA; Perfect JR; Cowen LE
    PLoS Pathog; 2010 Aug; 6(8):e1001069. PubMed ID: 20865172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fungal morphogenesis: some like it hot.
    Gow NA
    Curr Biol; 2009 Apr; 19(8):R333-4. PubMed ID: 19409283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional Mapping of Transcription Factor Grf10 That Regulates Adenine-Responsive and Filamentation Genes in Candida albicans.
    Wangsanut T; Tobin JM; Rolfes RJ
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes.
    Ku M; Baek YU; Kwak MK; Kang SO
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):772-788. PubMed ID: 27751952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance.
    Lu Y; Su C; Wang A; Liu H
    PLoS Biol; 2011 Jul; 9(7):e1001105. PubMed ID: 21811397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans.
    Schaekel A; Desai PR; Ernst JF
    BMC Genomics; 2013 Dec; 14(1):842. PubMed ID: 24289325
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptional control of cell type and morphogenesis in Candida albicans.
    Whiteway M
    Curr Opin Microbiol; 2000 Dec; 3(6):582-8. PubMed ID: 11121777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1-Hsp90 pathway.
    Guan G; Tao L; Yue H; Liang W; Gong J; Bing J; Zheng Q; Veri AO; Fan S; Robbins N; Cowen LE; Huang G
    PLoS Biol; 2019 Mar; 17(3):e2006966. PubMed ID: 30865631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous Nitric Oxide Signaling.
    Koch B; Barugahare AA; Lo TL; Huang C; Schittenhelm RB; Powell DR; Beilharz TH; Traven A
    Cell Rep; 2018 Nov; 25(8):2244-2258.e7. PubMed ID: 30463019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dimorphism and virulence in Candida albicans.
    Mitchell AP
    Curr Opin Microbiol; 1998 Dec; 1(6):687-92. PubMed ID: 10066539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans.
    Min K; Jannace TF; Si H; Veeramah KR; Haley JD; Konopka JB
    PLoS Pathog; 2021 Aug; 17(8):e1009861. PubMed ID: 34398936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cdc28 provides a molecular link between Hsp90, morphogenesis, and cell cycle progression in Candida albicans.
    Senn H; Shapiro RS; Cowen LE
    Mol Biol Cell; 2012 Jan; 23(2):268-83. PubMed ID: 22090345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.