BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 33626407)

  • 21. Feed-forward loops between metastatic cancer cells and their microenvironment-the stage of escalation.
    Baumann Z; Auf der Maur P; Bentires-Alj M
    EMBO Mol Med; 2022 Jun; 14(6):e14283. PubMed ID: 35506376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breast Cancer Metastatic Dormancy and Relapse: An Enigma of Microenvironment(s).
    Elkholi IE; Lalonde A; Park M; Côté JF
    Cancer Res; 2022 Dec; 82(24):4497-4510. PubMed ID: 36214624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stromal changes in the aged lung induce an emergence from melanoma dormancy.
    Fane ME; Chhabra Y; Alicea GM; Maranto DA; Douglass SM; Webster MR; Rebecca VW; Marino GE; Almeida F; Ecker BL; Zabransky DJ; Hüser L; Beer T; Tang HY; Kossenkov A; Herlyn M; Speicher DW; Xu W; Xu X; Jaffee EM; Aguirre-Ghiso JA; Weeraratna AT
    Nature; 2022 Jun; 606(7913):396-405. PubMed ID: 35650435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dormancy in the Tumor Microenvironment.
    Omokehinde T; Johnson RW
    Adv Exp Med Biol; 2021; 1329():35-49. PubMed ID: 34664232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic plasticity in metastatic dormancy: mechanisms and therapeutic implications.
    Robinson NJ; Parker KA; Schiemann WP
    Ann Transl Med; 2020 Jul; 8(14):903. PubMed ID: 32793747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumor cell dormancy: implications for the biology and treatment of breast cancer.
    Fehm T; Mueller V; Marches R; Klein G; Gueckel B; Neubauer H; Solomayer E; Becker S
    APMIS; 2008; 116(7-8):742-53. PubMed ID: 18834416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of myeloid-derived suppressor cells in metastasis.
    Cole K; Pravoverov K; Talmadge JE
    Cancer Metastasis Rev; 2021 Jun; 40(2):391-411. PubMed ID: 33411082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EMT and Stemness in Tumor Dormancy and Outgrowth: Are They Intertwined Processes?
    Weidenfeld K; Barkan D
    Front Oncol; 2018; 8():381. PubMed ID: 30258818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ZFP281 drives a mesenchymal-like dormancy program in early disseminated breast cancer cells that prevents metastatic outgrowth in the lung.
    Nobre AR; Dalla E; Yang J; Huang X; Wullkopf L; Risson E; Razghandi P; Anton ML; Zheng W; Seoane JA; Curtis C; Kenigsberg E; Wang J; Aguirre-Ghiso JA
    Nat Cancer; 2022 Oct; 3(10):1165-1180. PubMed ID: 36050483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 5-Azacytidine- and retinoic-acid-induced reprogramming of DCCs into dormancy suppresses metastasis via restored TGF-β-SMAD4 signaling.
    Singh DK; Carcamo S; Farias EF; Hasson D; Zheng W; Sun D; Huang X; Cheung J; Nobre AR; Kale N; Sosa MS; Bernstein E; Aguirre-Ghiso JA
    Cell Rep; 2023 Jun; 42(6):112560. PubMed ID: 37267946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities.
    De Angelis ML; Francescangeli F; Zeuner A
    Cancers (Basel); 2019 Oct; 11(10):. PubMed ID: 31619007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities.
    Mehraj U; Ganai RA; Macha MA; Hamid A; Zargar MA; Bhat AA; Nasser MW; Haris M; Batra SK; Alshehri B; Al-Baradie RS; Mir MA; Wani NA
    Cell Oncol (Dordr); 2021 Dec; 44(6):1209-1229. PubMed ID: 34528143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into the mechanisms of organ-specific breast cancer metastasis.
    Lorusso G; Rüegg C
    Semin Cancer Biol; 2012 Jun; 22(3):226-33. PubMed ID: 22504658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse.
    Lim AR; Ghajar CM
    Semin Cancer Biol; 2022 Jan; 78():104-123. PubMed ID: 33979673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone as a Preferential Site for Metastasis.
    Sowder ME; Johnson RW
    JBMR Plus; 2019 Mar; 3(3):e10126. PubMed ID: 30918918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency.
    Werner-Klein M; Grujovic A; Irlbeck C; Obradović M; Hoffmann M; Koerkel-Qu H; Lu X; Treitschke S; Köstler C; Botteron C; Weidele K; Werno C; Polzer B; Kirsch S; Gužvić M; Warfsmann J; Honarnejad K; Czyz Z; Feliciello G; Blochberger I; Grunewald S; Schneider E; Haunschild G; Patwary N; Guetter S; Huber S; Rack B; Harbeck N; Buchholz S; Rümmele P; Heine N; Rose-John S; Klein CA
    Nat Commun; 2020 Oct; 11(1):4977. PubMed ID: 33020483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. COVID-19-Induced Modifications in the Tumor Microenvironment: Do They Affect Cancer Reawakening and Metastatic Relapse?
    Francescangeli F; De Angelis ML; Baiocchi M; Rossi R; Biffoni M; Zeuner A
    Front Oncol; 2020; 10():592891. PubMed ID: 33194755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the breast cancer bone metastatic niche in complex three-dimensional cocultures.
    Marlow R; Dontu G
    Methods Mol Biol; 2015; 1293():213-20. PubMed ID: 26040690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecology and evolution of dormant metastasis.
    Blasco MT; Espuny I; Gomis RR
    Trends Cancer; 2022 Jul; 8(7):570-582. PubMed ID: 35370115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Perspective on Therapeutic Pan-Resistance in Metastatic Cancer.
    Korentzelos D; Clark AM; Wells A
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33022920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.