These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 3362677)

  • 1. Charge calculations in molecular mechanics 6: the calculation of partial atomic charges in nucleic acid bases and the electrostatic contribution to DNA base pairing.
    Abraham RJ; Smith PE
    Nucleic Acids Res; 1988 Mar; 16(6):2639-57. PubMed ID: 3362677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge calculations in molecular mechanics. Part 8. Partial atomic charges from classical calculations.
    Abraham RJ; Grant GH; Haworth IS; Smith PE
    J Comput Aided Mol Des; 1991 Feb; 5(1):21-39. PubMed ID: 2072123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometries, charges, dipole moments and interaction energies of normal, tautomeric and novel bases.
    Jiang SP; Raghunathan G; Ting KL; Xuan JC; Jernigan RL
    J Biomol Struct Dyn; 1994 Oct; 12(2):367-82. PubMed ID: 7702775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INTERMOLECULAR FORCES IN ASSOCIATION OF PURINES WITH POLYBENZENOID HYDROCARBONS.
    PULLMAN B; CLAVERIE P; CAILLET J
    Science; 1965 Mar; 147(3663):1305-7. PubMed ID: 14250326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [ON THE SEMI-CONDUCTIVITY OF PURINE AND PYRIMIDINE BASES OF NUCLEIC ACIDS].
    PULLMAN B
    C R Hebd Seances Acad Sci; 1964 Nov; 259():3101-3. PubMed ID: 14226077
    [No Abstract]   [Full Text] [Related]  

  • 6. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(1):28-55. PubMed ID: 24261751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD(T) levels.
    Rejnek J; Hobza P
    J Phys Chem B; 2007 Jan; 111(3):641-5. PubMed ID: 17228922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].
    Petrenko YM
    Biofizika; 2015; 60(5):853-60. PubMed ID: 26591595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases.
    Ornstein RL; Fresco JR
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5171-5. PubMed ID: 6577415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarizable model potential function for nucleic acid bases.
    Nakagawa S
    J Comput Chem; 2007 Jul; 28(9):1538-1550. PubMed ID: 17342710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STUDIES ON THE ANALYSIS OF PURINE AND PYRIMIDINE BASES OF NUCLEIC ACID. III. A DIRECT SPECTROPHOTOMETRIC METHOD FOR THE ANALYSIS OF THE PURINE AND PYRIMIDINE BASES IN DNA.
    HU PC; LIU CP; WU H; LIANG CC
    Sci Sin; 1964 May; 13():761-6. PubMed ID: 14170536
    [No Abstract]   [Full Text] [Related]  

  • 12. Charge calculations in molecular mechanics. IX. A general parameterisation of the scheme for saturated halogen, oxygen and nitrogen compounds.
    Abraham RJ; Grant GH
    J Comput Aided Mol Des; 1992 Jun; 6(3):273-86. PubMed ID: 1517778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular electrostatic potential energies and methylation of DNA bases: a molecular orbital-generated quantitative structure-activity relationship.
    Lewis DF; Griffiths VS
    Xenobiotica; 1987 Jun; 17(6):769-76. PubMed ID: 3630211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A TDDFT study of the excited states of DNA bases and their assemblies.
    Varsano D; Di Felice R; Marques MA; Rubio A
    J Phys Chem B; 2006 Apr; 110(14):7129-38. PubMed ID: 16599476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-dependent DNA structure. The role of base stacking interactions.
    Hunter CA
    J Mol Biol; 1993 Apr; 230(3):1025-54. PubMed ID: 8478917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On contribution of known atomic partial charges of protein backbone in electrostatic potential density maps.
    Wang J
    Protein Sci; 2017 Jun; 26(6):1098-1104. PubMed ID: 28370507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of molecular charge distribution on the basis of experimental infrared intensities and first-principles calculations: the case of CH bonds.
    Milani A; Castiglioni C
    J Phys Chem A; 2010 Jan; 114(1):624-32. PubMed ID: 19888738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of atomic charges and orbital energies as hydrogen-bonding-donor parameters for QSAR studies: comparison of MNDO, AM1 and PM3 methods.
    Ghafourian T; Dearden JC
    J Pharm Pharmacol; 2000 Jun; 52(6):603-10. PubMed ID: 10875535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.