These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33626952)

  • 1. Structure design and mechanical performance test of a direct ventricular assist device pneumatic flexible actuator.
    Yun Z; Xu K; Yang F; Tang X
    Int J Artif Organs; 2022 Jan; 45(1):35-43. PubMed ID: 33626952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Composite Flexible Sensor for Direct Ventricular Assist Device.
    Yun Z; Li K; Jiang H; Tang X
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of robot hand with pneumatic actuator and construct of master-slave system.
    Nishino S; Tsujiuchi N; Koizumi T; Komatsubara H; Kudawara T; Shimizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3027-30. PubMed ID: 18002632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an actuator with bionic claw hook-suction cup hybrid structure for soft robot.
    Wang X; Lin A; Yuan W; Hu H; Cheng G; Ding J
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38631357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Fabrication of a Tunable Optofluidic Microlens Driven by an Encircled Thermo-Pneumatic Actuator.
    Zhang W; Li H; Zou Y; Zhao P; Li Z
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compressive type skeletal muscle pump as a biomechanical energy source.
    Mizuhara H; Oda T; Koshiji T; Ikeda T; Nishimura K; Nomoto S; Matsuda K; Tsutsui N; Kanda K; Ban T
    ASAIO J; 1996; 42(5):M637-41. PubMed ID: 8944958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A soft pneumatic bistable reinforced actuator bioinspired by Venus Flytrap with enhanced grasping capability.
    Wang X; Khara A; Chen C
    Bioinspir Biomim; 2020 Aug; 15(5):056017. PubMed ID: 32590362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical behavior and stability of the internal membrane of the InCor ventricular assist device.
    da Costa Teixeira PB; Gonçalves PB; Cestari IA; Leirner AA; Pamplona D
    Artif Organs; 2001 Nov; 25(11):912-21. PubMed ID: 11903146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a closed air loop electropneumatic actuator for driving a pneumatic blood pump.
    Jeong GS; Hwang CM; Nam KW; Ahn CB; Kim HC; Lee JJ; Choi J; Son HS; Fang YH; Son KH; Lim CH; Sun K
    Artif Organs; 2009 Aug; 33(8):657-62. PubMed ID: 19624584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Analysis and Experiment of the Fiber Push-Out Device Based on Piezoelectric Actuator.
    Sun M; Feng Y; Xu J; Wang X; Zhou H
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion.
    Vignali E; Manigrasso Z; Gasparotti E; Biffi B; Landini L; Positano V; Capelli C; Celi S
    Int J Artif Organs; 2019 Oct; 42(10):539-547. PubMed ID: 31269860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.
    Lee HS; Rho YR; Park CY; Hwang CM; Kim WG; Sun K; Choi MJ; Lee KK; Cheong JT; Shim EB; Min BG
    Int J Artif Organs; 2002 Jun; 25(6):556-61. PubMed ID: 12117296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a 3D Printed Double-Acting Linear Pneumatic Actuator for the Tendon Gripping.
    Grgić I; Wertheimer V; Karakašić M; Ivandić Ž
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinant factors of efficiency of a motor-driven ventricular assist device.
    Nakamura T; Hayashi K; Hirano K; Matsumoto T
    Biomed Mater Eng; 1994; 4(1):27-36. PubMed ID: 7920192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for designing of customized electromechanical actuators of blood pumps.
    de Souza RL; Chabu IE; Drigo da Silva E; de Andrade AJP; Leao TF; Bock EGP
    Artif Organs; 2020 Aug; 44(8):797-802. PubMed ID: 31437303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material.
    Yang Y; Chen Y; Li Y; Chen MZQ; Wei Y
    Soft Robot; 2017 Jun; 4(2):147-162. PubMed ID: 29182093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A magnetically actuated left ventricular assist device.
    Kovacs SG; Reynolds DG; McKeown PP; Augereau PG; Wasselle JA; Ondrovic LE; Aiba M
    ASAIO J; 1992; 38(1):38-46. PubMed ID: 1348192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of stresses developed in the blood sac of a left ventricular assist device.
    Haut Donahue TL; Dehlin W; Gillespie J; Weiss WJ; Rosenberg G
    Med Eng Phys; 2009 May; 31(4):454-60. PubMed ID: 19131267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IntraVAD, an intra-ventricular assistive device for heart failure patients: design and proof of concept simulations.
    Hosseinipour M; Elahinia M; Wanna F
    Ann Biomed Eng; 2014 May; 42(5):999-1011. PubMed ID: 24482199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsatile ventricular assist device with pericardial inner lining.
    Leirner AA; Hayashida SA; Maizato MJ; Silva M de-L ; Cestari IA; Affeld K
    Artif Organs; 2001 Nov; 25(11):907-11. PubMed ID: 11903145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.