These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Feasibility of using piezohydraulic pumps as motors for pediatric ventricular assist devices. Valdovinos J; Levi DS; Williams R; Carman GP Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5590-4. PubMed ID: 23367196 [TBL] [Abstract][Full Text] [Related]
23. Development of the NEDO implantable ventricular assist device with Gyro centrifugal pump. Yoshikawa M; Nonaka K; Linneweber J; Kawahito S; Ohtsuka G; Nakata K; Takano T; Schulte-Eistrup S; Glueck J; Schima H; Wolner E; Nosé Y Artif Organs; 2000 Jun; 24(6):459-67. PubMed ID: 10886066 [TBL] [Abstract][Full Text] [Related]
24. Design of an Inkjet-Printed Rotary Bellows Actuator and Simulation of its Time-Dependent Deformation Behavior. Dämmer G; Lackner M; Laicher S; Neumann R; Major Z Front Robot AI; 2021; 8():663158. PubMed ID: 34179108 [TBL] [Abstract][Full Text] [Related]
26. Design of an artificial left ventricular muscle: an innovative way to actuate blood pumps? Van Der Smissen B; Claessens T; Verdonck P; Van Ransbeeck P; Segers P Artif Organs; 2009 Jun; 33(6):464-8. PubMed ID: 19473142 [TBL] [Abstract][Full Text] [Related]
27. Wearable air supply for pneumatic artificial hearts and ventricular assist devices. Sipin AJ; Fabrey WJ; Smith SH; Doussourd JD; Olsen DB Artif Organs; 1992 Aug; 16(4):431-8. PubMed ID: 10078289 [TBL] [Abstract][Full Text] [Related]
28. The circumferential loading of a direct cardiac compression assist device. Keeling DG; Levesley MC; Walker PG; Hanson BM; Watterson K; Pereni CI; Jaber O Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1031-4. PubMed ID: 18002136 [TBL] [Abstract][Full Text] [Related]
29. Magnetic design for the PediaFlow ventricular assist device. Noh MD; Antaki JF; Ricci M; Gardiner J; Paden D; Wu J; Prem E; Borovetz H; Paden BE Artif Organs; 2008 Feb; 32(2):127-35. PubMed ID: 18005272 [TBL] [Abstract][Full Text] [Related]
30. Design Optimization of a Pneumatic Soft Robotic Actuator Using Model-Based Optimization and Deep Reinforcement Learning. Raeisinezhad M; Pagliocca N; Koohbor B; Trkov M Front Robot AI; 2021; 8():639102. PubMed ID: 34026857 [TBL] [Abstract][Full Text] [Related]
31. Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Actuator. Zhao W; Zhang Y; Wang N Appl Bionics Biomech; 2021; 2021():6623059. PubMed ID: 33680074 [TBL] [Abstract][Full Text] [Related]
32. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver. Lee JJ; Kim BS; Choi J; Choi H; Ahn CB; Nam KW; Jeong GS; Lim CH; Son HS; Sun K Artif Organs; 2009 Aug; 33(8):627-33. PubMed ID: 19624587 [TBL] [Abstract][Full Text] [Related]
34. Use of an intraaortic balloon pump as a pneumatic ventricular assist device controller. Macrae DJ; Glenville B; McCarthy T; Cooper L; Guerreiro D; Ross DN Ann Thorac Surg; 1989 May; 47(5):752-5. PubMed ID: 2730196 [TBL] [Abstract][Full Text] [Related]
35. Physiology of the native heart and Thermo Cardiosystems left ventricular assist device complex at rest and during exercise: implications for chronic support. Branch KR; Dembitsky WP; Peterson KL; Adamson R; Gordon JB; Smith SC; Jaski BE J Heart Lung Transplant; 1994; 13(4):641-50; discussion 651. PubMed ID: 7947881 [TBL] [Abstract][Full Text] [Related]