BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33627123)

  • 1. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants.
    Duan A; Wang H; Zhu Y; Wang Q; Zhang J; Hou Q; Xing Y; Shi J; Hou J; Qin Z; Chen Z; Liu Z; Yang J
    BMC Biol; 2021 Feb; 19(1):38. PubMed ID: 33627123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis.
    Doke T; Huang S; Qiu C; Liu H; Guan Y; Hu H; Ma Z; Wu J; Miao Z; Sheng X; Zhou J; Cao A; Li J; Kaufman L; Hung A; Brown CD; Pestell R; Susztak K
    J Clin Invest; 2021 May; 131(10):. PubMed ID: 33998598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and CRISPR/Cas9 Genome Editing.
    Yoo KH; Hennighausen L; Shin HY
    J Mammary Gland Biol Neoplasia; 2019 Mar; 24(1):47-59. PubMed ID: 30291498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting super-enhancer hierarchy based on chromatin interactions.
    Huang J; Li K; Cai W; Liu X; Zhang Y; Orkin SH; Xu J; Yuan GC
    Nat Commun; 2018 Mar; 9(1):943. PubMed ID: 29507293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits.
    Chawla A; Nagy C; Turecki G
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-Based Engineering of the Epigenome.
    Pulecio J; Verma N; Mejía-Ramírez E; Huangfu D; Raya A
    Cell Stem Cell; 2017 Oct; 21(4):431-447. PubMed ID: 28985525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive epigenome characterization reveals diverse transcriptional regulation across human vascular endothelial cells.
    Nakato R; Wada Y; Nakaki R; Nagae G; Katou Y; Tsutsumi S; Nakajima N; Fukuhara H; Iguchi A; Kohro T; Kanki Y; Saito Y; Kobayashi M; Izumi-Taguchi A; Osato N; Tatsuno K; Kamio A; Hayashi-Takanaka Y; Wada H; Ohta S; Aikawa M; Nakajima H; Nakamura M; McGee RC; Heppner KW; Kawakatsu T; Genno M; Yanase H; Kume H; Senbonmatsu T; Homma Y; Nishimura S; Mitsuyama T; Aburatani H; Kimura H; Shirahige K
    Epigenetics Chromatin; 2019 Dec; 12(1):77. PubMed ID: 31856914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome.
    Li J; Xiang Y; Zhang L; Qi X; Zheng Z; Zhou P; Tang Z; Jin Y; Zhao Q; Fu Y; Zhao Y; Li X; Fu L; Zhao S
    BMC Biol; 2022 Jun; 20(1):136. PubMed ID: 35681201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Atlas of Promoter Chromatin Modifications and HiChIP Regulatory Interactions in Human Subcutaneous Adipose-Derived Stem Cells.
    Halasz L; Divoux A; Sandor K; Erdos E; Daniel B; Smith SR; Osborne TF
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
    Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC
    Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control.
    Lau CH; Suh Y
    Mamm Genome; 2018 Apr; 29(3-4):205-228. PubMed ID: 29196861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells.
    Fufa TD; Baxter LL; Wedel JC; Gildea DE; ; Loftus SK; Pavan WJ
    Epigenetics Chromatin; 2019 Aug; 12(1):50. PubMed ID: 31399133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility.
    Goell JH; Hilton IB
    Trends Biotechnol; 2021 Jul; 39(7):678-691. PubMed ID: 33972106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci.
    Sieber KB; Batorsky A; Siebenthall K; Hudkins KL; Vierstra JD; Sullivan S; Sur A; McNulty M; Sandstrom R; Reynolds A; Bates D; Diegel M; Dunn D; Nelson J; Buckley M; Kaul R; Sampson MG; Himmelfarb J; Alpers CE; Waterworth D; Akilesh S
    J Am Soc Nephrol; 2019 Mar; 30(3):421-441. PubMed ID: 30760496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay Between the Histone Variant H2A.Z and the Epigenome in Pancreatic Cancer.
    Ávila-López PA; Nuñez-Martínez HN; Peralta-Alvarez CA; Martinez-Calvillo S; Recillas-Targa F; Hernández-Rivas R
    Arch Med Res; 2022 Dec; 53(8):840-858. PubMed ID: 36470770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging between Mouse and Human Enhancer-Promoter Long-Range Interactions in Neural Stem Cells, to Understand Enhancer Function in Neurodevelopmental Disease.
    D'Aurizio R; Catona O; Pitasi M; Li YE; Ren B; Nicolis SK
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin Conformation Links Distal Target Genes to CKD Loci.
    Brandt MM; Meddens CA; Louzao-Martinez L; van den Dungen NAM; Lansu NR; Nieuwenhuis EES; Duncker DJ; Verhaar MC; Joles JA; Mokry M; Cheng C
    J Am Soc Nephrol; 2018 Feb; 29(2):462-476. PubMed ID: 29093029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.