These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33627284)
1. Variation in upper thermal tolerance among 19 species from temperate wetlands. Katzenberger M; Duarte H; Relyea R; Beltrán JF; Tejedo M J Therm Biol; 2021 Feb; 96():102856. PubMed ID: 33627284 [TBL] [Abstract][Full Text] [Related]
2. Multi-decadal warming alters predator's effect on prey community composition. Niu J; Huss M; Garnier A; Vasemägi A; Gårdmark A Proc Biol Sci; 2024 Aug; 291(2028):20240511. PubMed ID: 39110169 [TBL] [Abstract][Full Text] [Related]
3. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. Turriago JL; Tejedo M; Hoyos JM; Bernal MH J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344 [TBL] [Abstract][Full Text] [Related]
4. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs. Havermans C; Auel H; Hagen W; Held C; Ensor NS; A Tarling G Adv Mar Biol; 2019; 82():51-92. PubMed ID: 31229150 [TBL] [Abstract][Full Text] [Related]
5. Source of environmental data and warming tolerance estimation in six species of North American larval anurans. Katzenberger M; Hammond J; Tejedo M; Relyea R J Therm Biol; 2018 Aug; 76():171-178. PubMed ID: 30143292 [TBL] [Abstract][Full Text] [Related]
6. Standardized ethograms and a device for assessing amphibian thermal responses in a warming world. Meza-Parral Y; García-Robledo C; Pineda E; Escobar F; Donnelly MA J Therm Biol; 2020 Apr; 89():102565. PubMed ID: 32364996 [TBL] [Abstract][Full Text] [Related]
7. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399 [TBL] [Abstract][Full Text] [Related]
8. Low quality diet and challenging temperatures affect vital rates, but not thermal tolerance in a tropical insect expanding its diet to an exotic plant. Garcia-Robledo C; Charlotten-Silva M; Cruz C; Kuprewicz EK J Therm Biol; 2018 Oct; 77():7-13. PubMed ID: 30196902 [TBL] [Abstract][Full Text] [Related]
9. Effects of an invasive plant transcend ecosystem boundaries through a dragonfly-mediated trophic pathway. Burkle LA; Mihaljevic JR; Smith KG Oecologia; 2012 Dec; 170(4):1045-52. PubMed ID: 22622872 [TBL] [Abstract][Full Text] [Related]
10. Species interactions and the effects of climate variability on a wetland amphibian metacommunity. Davis CL; Miller DA; Walls SC; Barichivich WJ; Riley JW; Brown ME Ecol Appl; 2017 Jan; 27(1):285-296. PubMed ID: 28052496 [TBL] [Abstract][Full Text] [Related]
11. Predators drive community reorganization during experimental range shifts. Jones NT; Symons CC; Cavalheri H; Pedroza-Ramos A; Shurin JB J Anim Ecol; 2020 Oct; 89(10):2378-2388. PubMed ID: 32592594 [TBL] [Abstract][Full Text] [Related]
12. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. Simon MN; Ribeiro PL; Navas CA J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628 [TBL] [Abstract][Full Text] [Related]
13. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565 [TBL] [Abstract][Full Text] [Related]
14. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient. Pintanel P; Tejedo M; Salinas-Ivanenko S; Jervis P; Merino-Viteri A J Anim Ecol; 2021 Aug; 90(8):1985-1995. PubMed ID: 33942306 [TBL] [Abstract][Full Text] [Related]
15. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity. Pincebourde S; Suppo C Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561 [TBL] [Abstract][Full Text] [Related]
16. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming. Delgado-Suazo P; Burrowes PA J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199 [TBL] [Abstract][Full Text] [Related]
18. Local adaptation to temperature conserves top-down control in a grassland food web. Barton BT Proc Biol Sci; 2011 Oct; 278(1721):3102-7. PubMed ID: 21367789 [TBL] [Abstract][Full Text] [Related]
19. Variation in Larval Thermal Tolerance of Three Saproxylic Beetle Species. Lawhorn KA; Yanoviak SP Environ Entomol; 2022 Dec; 51(6):1218-1223. PubMed ID: 36346643 [TBL] [Abstract][Full Text] [Related]
20. Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Allgeier S; Friedrich A; Brühl CA Sci Total Environ; 2019 Oct; 686():1173-1184. PubMed ID: 31412513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]