These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33627433)

  • 21. Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving.
    Huang S; Villalobos LF; Babu DJ; He G; Li M; Züttel A; Agrawal KV
    ACS Appl Mater Interfaces; 2019 May; 11(18):16729-16736. PubMed ID: 30990645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-layer graphene membranes by crack-free transfer for gas mixture separation.
    Huang S; Dakhchoune M; Luo W; Oveisi E; He G; Rezaei M; Zhao J; Alexander DTL; Züttel A; Strano MS; Agrawal KV
    Nat Commun; 2018 Jul; 9(1):2632. PubMed ID: 29980683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Nucleation-Decoupled and Site-Specific Incorporation of Å-Scale Pores in Graphene Via Epoxidation.
    Huang S; Villalobos LF; Li S; Vahdat MT; Chi HY; Hsu KJ; Bondaz L; Boureau V; Marzari N; Agrawal KV
    Adv Mater; 2022 Dec; 34(51):e2206627. PubMed ID: 36271513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.
    Boutilier MSH; Jang D; Idrobo JC; Kidambi PR; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2017 Jun; 11(6):5726-5736. PubMed ID: 28609103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective Photonic Gasification of Strained Oxygen Clusters on Graphene for Tuning Pore Size in the Å Regime.
    Bondaz L; Ronghe A; Li S; Čerņevičs KN; Hao J; Yazyev OV; Ayappa KG; Agrawal KV
    JACS Au; 2023 Oct; 3(10):2844-2854. PubMed ID: 37885574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advancing Molecular Sieving via Å-Scale Pore Tuning in Bottom-Up Graphene Synthesis.
    Goethem CV; Shen Y; Chi HY; Mensi M; Zhao K; Nijmeijer A; Just PE; Agrawal KV
    ACS Nano; 2024 Feb; 18(7):5730-40. PubMed ID: 38324377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes.
    Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D
    ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical Role of the Molecular Interface in Double-Layered Pebax-1657/PDMS Nanomembranes for Highly Efficient CO
    Selyanchyn O; Selyanchyn R; Fujikawa S
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33196-33209. PubMed ID: 32589389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-scale synthesis of crystalline g-C
    Villalobos LF; Vahdat MT; Dakhchoune M; Nadizadeh Z; Mensi M; Oveisi E; Campi D; Marzari N; Agrawal KV
    Sci Adv; 2020 Jan; 6(4):eaay9851. PubMed ID: 32064325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating.
    Guo W; Mahurin SM; Unocic RR; Luo H; Dai S
    Nano Lett; 2020 Nov; 20(11):7995-8000. PubMed ID: 33064492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Restricting Lattice Flexibility in Polycrystalline Metal-Organic Framework Membranes for Carbon Capture.
    Babu DJ; He G; Hao J; Vahdat MT; Schouwink PA; Mensi M; Agrawal KV
    Adv Mater; 2019 Jul; 31(28):e1900855. PubMed ID: 31087696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crown Nanopores in Graphene for CO
    Luan B; Elmegreen B; Kuroda MA; Gu Z; Lin G; Zeng S
    ACS Nano; 2022 Apr; 16(4):6274-6281. PubMed ID: 35324145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics.
    Liu H; Dai S; Jiang DE
    Nanoscale; 2013 Oct; 5(20):9984-7. PubMed ID: 23990030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation.
    Li H; Song Z; Zhang X; Huang Y; Li S; Mao Y; Ploehn HJ; Bao Y; Yu M
    Science; 2013 Oct; 342(6154):95-8. PubMed ID: 24092739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of H
    Lei M; Sun C; Zou C; Mi H; Wang C
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11767-11774. PubMed ID: 29442311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facilitated transport membrane with functionalized ionic liquid carriers for CO
    Lee YY; Wickramasinghe NP; Dikki R; Jan DL; Gurkan B
    Nanoscale; 2022 Sep; 14(35):12638-12650. PubMed ID: 36040354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics characteristics of straw semi-char gasification with carbon dioxide.
    Xiao R; Yang W
    Bioresour Technol; 2016 May; 207():180-7. PubMed ID: 26890792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acid-Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction.
    Li P; Lu X; Wu Z; Wu Y; Malpass-Evans R; McKeown NB; Sun X; Wang H
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10918-10923. PubMed ID: 32212372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.